

#### **FINAL REPORT**

Test Facility Study No. 5002034

A 6-Week (4 doses) Intramuscular Injection Toxicity Study of mRNA-1647 in Sprague-Dawley Rats Followed by a 2-Week Recovery Period

TEST FACILITY:
Charles River Laboratories Montreal ULC
Sherbrooke Site (CR SHB)
1580 Ida-Metivier
Sherbrooke, QC J1E 0Bs
Canada

## TABLE OF CONTENTS

| LIST OF FIGURES                                                                                                                                                                                                                                                                                                                 | 6     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| LIST OF TABLES                                                                                                                                                                                                                                                                                                                  | ilans |
| LIST OF APPENDICES                                                                                                                                                                                                                                                                                                              | di 8  |
| OLIATITY A COLD ANCE OF A TEMPNIT                                                                                                                                                                                                                                                                                               | 9     |
| COMPLIANCE STATEMENT                                                                                                                                                                                                                                                                                                            | 11    |
| 1. RESPONSIBLE PERSONNEL                                                                                                                                                                                                                                                                                                        | 12    |
| 1.1. Test Facility                                                                                                                                                                                                                                                                                                              | 12    |
| 1.2. Individual Scientists (IS) at Test Facility                                                                                                                                                                                                                                                                                | 12    |
| COMPLIANCE STATEMENT  1. RESPONSIBLE PERSONNEL  1.1. Test Facility  1.2. Individual Scientists (IS) at Test Facility  1.3. Principal Investigators (PI) at Test Facility-designated Test Site(s)                                                                                                                                | 12    |
| 1.4. PIs at Sponsor or Sponsor-designated Test Site(s)                                                                                                                                                                                                                                                                          | 12    |
| 2. SUMMARY                                                                                                                                                                                                                                                                                                                      | 13    |
| 3. INTRODUCTION                                                                                                                                                                                                                                                                                                                 | 16    |
| 1.2. Individual Scientists (IS) at Test Facility  1.3. Principal Investigators (PI) at Test Facility-designated Test Site(s)  1.4. PIs at Sponsor or Sponsor-designated Test Site(s)  2. SUMMARY  3. INTRODUCTION  4. MATERIALS AND METHODS  4.1. Test Item  4.2. Reference Item  4.3. Test and Reference Item Characterization | 16    |
| 4.1. Test Item                                                                                                                                                                                                                                                                                                                  | 16    |
| 4.2. Reference Item                                                                                                                                                                                                                                                                                                             | 17    |
| 4.3. Test and Reference Item Characterization                                                                                                                                                                                                                                                                                   | 17    |
| 4.4. Analysis of Test flem                                                                                                                                                                                                                                                                                                      | 17    |
| 4.5. Reserve Samples                                                                                                                                                                                                                                                                                                            | 17    |
| 4.6. Test and Reference Item Inventory and Disposition                                                                                                                                                                                                                                                                          | 17    |
| 4.7. Dose Formulation and Analysis                                                                                                                                                                                                                                                                                              | 18    |
| 4.7.1. Preparation of Reference Item                                                                                                                                                                                                                                                                                            | 18    |
| 4.7.2. Preparation of Test Item                                                                                                                                                                                                                                                                                                 | 18    |
| 4.7.3. Sample Collection and Analysis                                                                                                                                                                                                                                                                                           | 18    |
| 4.7.3.1. Analytical Method                                                                                                                                                                                                                                                                                                      | 18    |
| 4.7.3.2. Concentration and Homogeneity Analysis                                                                                                                                                                                                                                                                                 | 19    |
| 4.7.3.3. Stability Analysis                                                                                                                                                                                                                                                                                                     | 19    |
| 4.8. Test System                                                                                                                                                                                                                                                                                                                | 19    |

| 4.8.1. Receipt                                                                                                                                                                                                                                                                                                      | 19   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.8.2. Justification for Test System and Number of Animals                                                                                                                                                                                                                                                          | 19   |
| 4.8.3. Animal Identification                                                                                                                                                                                                                                                                                        | 19   |
| 4.8.4. Environmental Acclimation                                                                                                                                                                                                                                                                                    | 20   |
| 4.8.5. Selection, Assignment, Replacement, and Disposition of Animals                                                                                                                                                                                                                                               | 20   |
| 4.8.6. Husbandry                                                                                                                                                                                                                                                                                                    | 7.0. |
| 4.8.6.1. Housing                                                                                                                                                                                                                                                                                                    | 20   |
| 4.8.6.2. Environmental Conditions                                                                                                                                                                                                                                                                                   | 20   |
| 4.8.6.3. Food                                                                                                                                                                                                                                                                                                       | 20   |
| 4.8.6.4. Water                                                                                                                                                                                                                                                                                                      | 21   |
| 4.8.6.1. Housing  4.8.6.2. Environmental Conditions  4.8.6.3. Food  4.8.6.4. Water  4.8.6.5. Animal Enrichment  4.8.6.6. Veterinary Care  4.9. Experimental Design  4.9.1. Administration of Test Materials  4.9.2. Justification of Route and Dose Levels  4.9.1. In-life Procedures Observations and Measurements | 21   |
| 4.8.6.6. Veterinary Care                                                                                                                                                                                                                                                                                            | 21   |
| 4.9. Experimental Design                                                                                                                                                                                                                                                                                            | 21   |
| 4.9.1. Administration of Test Materials                                                                                                                                                                                                                                                                             | 22   |
| 4.9.2. Justification of Route and Dose Levels                                                                                                                                                                                                                                                                       | 22   |
| 4.10. In-life Procedures, Observations, and Measurements                                                                                                                                                                                                                                                            | 22   |
| 4.10.1. Mortality/Moribundity Checks                                                                                                                                                                                                                                                                                | 22   |
| 4.10.2. Clinical Observations                                                                                                                                                                                                                                                                                       | 22   |
| 4.10.2.1. Detailed Clinical Observations                                                                                                                                                                                                                                                                            | 22   |
| 4.10.3. Local Irritation Assessment                                                                                                                                                                                                                                                                                 | 23   |
| 4.10.4. Body Weights                                                                                                                                                                                                                                                                                                | 23   |
| 4.10.5. Food Consumption                                                                                                                                                                                                                                                                                            | 23   |
| 4.10.6. Ophthalmic Examinations                                                                                                                                                                                                                                                                                     | 23   |
| 4.10.7. Body Temperature                                                                                                                                                                                                                                                                                            | 23   |
| 4.11. Laboratory Evaluations                                                                                                                                                                                                                                                                                        | 24   |
| 4.11.1. Clinical Pathology                                                                                                                                                                                                                                                                                          | 24   |
| 4.11.1.1 Sample Collection                                                                                                                                                                                                                                                                                          | 24   |
| 4.11.1.2. Hematology                                                                                                                                                                                                                                                                                                | 24   |
| 4.11.1.3. Coagulation                                                                                                                                                                                                                                                                                               | 24   |

|    | 4.11.1.4. Clinical Chemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|    | 4.11.1.5. α1-acid Glycoprotein and α2-macroglobulin Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25 |
|    | 4.11.2. Laboratory Investigation (Cytokines Analysis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 |
|    | 4.11.3. Anti-Therapeutic Antibody (ATA) Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 |
|    | 4.12. PBMC Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27 |
|    | 4.13. Terminal Procedures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 |
|    | 4.13.1. Unscheduled Deaths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27 |
|    | 4.13.2. Scheduled Euthanasia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27 |
|    | 4.13.3. Necropsy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27 |
|    | 4.13.4. Organ Weights                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 |
|    | 4.13.5. Tissue Collection and Preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28 |
|    | 4.13.6. Histology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29 |
|    | 4.13.7. Histopathology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29 |
|    | 4.13.8. Peer Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 |
|    | 4.13.1. Unscheduled Deaths 4.13.2. Scheduled Euthanasia 4.13.3. Necropsy 4.13.4. Organ Weights 4.13.5. Tissue Collection and Preservation 4.13.6. Histology 4.13.7. Histopathology 4.13.8. Peer Review 4.13.9. Bone Marrow Smear Analysis 5. CONSTRUCTED VARIABLES 6. STATISTICAL ANALYSIS 6.1. Parametric/Non-parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30 |
| 5  | CONSTRUCTED VARIABLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 |
| 6  | 5. STATISTICAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 |
|    | 6.1. Parametric/Non-parametric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31 |
| 7  | COMPUTERIZED SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31 |
|    | B. RETENTION OF RECORDS, SAMPLES, AND SPECIMENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32 |
| 9  | RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33 |
|    | 9.1. Dose Formulation Analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33 |
|    | 9.2. End of Use Bulk Test Item Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33 |
|    | 9.3. Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33 |
|    | 9.4. Clinical Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33 |
| 16 | 9.5. Local Irritation Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33 |
|    | 9.6. Body Weights and Body Weight Gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34 |
|    | 9.7. Food Consumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 |
|    | 9.8. Opthalmology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34 |
|    | THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SERVICE AND ADDRESS OF THE PERSON NAMED IN COLUMN TO SE |    |

| 9.9. Body Temperature                                                                                                                                                                                                                                                                                                                                     | 34    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 9.10. Hematology                                                                                                                                                                                                                                                                                                                                          | 35    |
| 9.11. Coagulation                                                                                                                                                                                                                                                                                                                                         | 36    |
| 9.12. Clinical Chemistry                                                                                                                                                                                                                                                                                                                                  | 36    |
| 9.13. Alpha-1-Acid Glycoprotein                                                                                                                                                                                                                                                                                                                           | i 037 |
| 9.14. Alpha-2-Macroglobulin                                                                                                                                                                                                                                                                                                                               | 37    |
| 9.15. Cytokines                                                                                                                                                                                                                                                                                                                                           | 37    |
| 9.16. Anti-Therapeutic Antibody (ATA)                                                                                                                                                                                                                                                                                                                     | 37    |
| 9.17. PBMC                                                                                                                                                                                                                                                                                                                                                | 38    |
| 9.18. Gross Pathology                                                                                                                                                                                                                                                                                                                                     | 38    |
| 9.18.1. Terminal Necropsy (Day 44).                                                                                                                                                                                                                                                                                                                       | 38    |
| 9.18.2. Recovery Necropsy (Day 57)                                                                                                                                                                                                                                                                                                                        | 39    |
| 9.19. Organ Weights                                                                                                                                                                                                                                                                                                                                       | 40    |
| 9.19.1. Terminal Necropsy (Day 44)                                                                                                                                                                                                                                                                                                                        | 40    |
| 9.19.2. Recovery Necropsy (Day 57)                                                                                                                                                                                                                                                                                                                        | 40    |
| 9.20. Histopathology                                                                                                                                                                                                                                                                                                                                      | 41    |
| 9.20.1. Terminal Necropsy (Day 44)                                                                                                                                                                                                                                                                                                                        | 41    |
| 9.20.2. Recovery Necropsy (Day 57)                                                                                                                                                                                                                                                                                                                        | 43    |
| 9.14. Alpha-2-Macroglobulin 9.15. Cytokines 9.16. Anti-Therapeutic Antibody (ATA) 9.17. PBMC 9.18. Gross Pathology 9.18.1. Terminal Necropsy (Day 44) 9.18.2. Recovery Necropsy (Day 57) 9.19. Organ Weights 9.19.1. Terminal Necropsy (Day 57) 9.20. Histopathology 9.20.1. Terminal Necropsy (Day 44) 9.20.2. Recovery Necropsy (Day 58) 10. CONCLUSION | 45    |

## LIST OF TABLES

| Table 1 Summary of Clinical Observations                                                                                                                                                                                           | 48 Ker |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Table 2 Summary of Body Weights                                                                                                                                                                                                    | 53     |
| Table 3 Summary of Body Weight Gains                                                                                                                                                                                               |        |
| Table 4 Summary of Food Consumption                                                                                                                                                                                                | 61     |
| rable 3 Summary of Body Temperature varies                                                                                                                                                                                         | 05     |
| Table 6 Summary of Hematology Values                                                                                                                                                                                               | 67     |
| Table 7 Summary of Coagulation Values                                                                                                                                                                                              | 79     |
| Table 4 Summary of Food Consumption  Table 5 Summary of Body Temperature Values  Table 6 Summary of Hematology Values  Table 7 Summary of Coagulation Values  Table 8 Summary of Clinical Chemistry Values                         | 83     |
| Table 6 Summary of Hematology Values  Table 7 Summary of Coagulation Values  Table 8 Summary of Clinical Chemistry Values  Table 9 Summary of α1-acid Glycoprotein and α2-macroglobulin Values                                     | 95     |
| Table 6 Summary of Coagulation Values  Table 8 Summary of Clinical Chemistry Values  Table 9 Summary of α1-acid Glycoprotein and α2-macroglobulin Values  Table 10 Summary of Cytokine Values  Table 10 Summary of Cytokine Values | 99     |

# LIST OF APPENDICES

|           | Appendix 1 Study Plan, Amendments, and Deviations                                   | 111  |
|-----------|-------------------------------------------------------------------------------------|------|
|           | Appendix 2 Test and Reference Item Characterization                                 | 345  |
|           | Appendix 3 Dose Formulation Analysis Report                                         | 354  |
|           | Appendix 4 Individual Animal Mortality                                              | 391  |
|           | Appendix 5 Individual Clinical Observations and Local Irritation Assessment         | 395  |
|           | Appendix 6 Individual Body Weights                                                  | 449  |
|           | Appendix 7 Individual Body Weight Gains                                             | 466  |
|           | Appendix 8 Individual Food Consumption Values                                       | 483  |
|           | Appendix 9 Body Temperature                                                         | 500  |
|           | Appendix 10 Individual Hematology Values                                            | 509  |
|           | Appendix 11 Individual Coagulation Values                                           | 537  |
|           | Appendix 12 Individual Clinical Chemistry Values                                    | 545  |
|           | Appendix 3 Dose Formulation Analysis Report  Appendix 4 Individual Animal Mortality | 566  |
|           | Appendix 14 Individual Cytokine Values                                              | 577  |
|           | Appendix 14 Individual Cytokine Values                                              | 586  |
|           | Appendix 16 Anti-Therapeutic Antibody Report                                        | 603  |
|           | Appendix 17 PBMC Report                                                             | 630  |
|           | Appendix 18 Immunology Report                                                       | 648  |
|           | Appendix 19 Pathology Report                                                        | 705  |
|           | Appendix 20 Pathology Peer Review Statement                                         | 1015 |
| This docu | ment cannot be Re                                                                   |      |

## **QUALITY ASSURANCE STATEMENT**

Study Number: 5002034

This Study has been audited by Quality Assurance in accordance with the applicable Good Laboratory Practice regulations. Reports were submitted in accordance with SOPs as follows:

#### **QA INSPECTION DATES**

Dates Findings Submitted to:

| Date(s) of Audit                         | Phase(s) Audited                                  | Study Director | Management  |
|------------------------------------------|---------------------------------------------------|----------------|-------------|
| 09-Mar-2017                              | Final Study Plan                                  | 10-Mar-2017    | 10-Mar-2017 |
| 20-Mar-2017                              | Study Plan Amendment 1                            | 20-Mar-2017    | 20-Mar-2017 |
| 23-Mar-2017                              | Addition of Study Plan to Provantis               | 23-Mar-2017    | 23-Mar-2017 |
| 23-Mar-2017                              | Study Plan Amendment 2                            | 23-Mar-2017    | 23-Mar-2017 |
| 05-Apr-2017                              | Dose Preparation                                  | 05-Apr-2017    | 05-Apr-2017 |
| 06-Apr-2017                              | Draize Evaluation                                 | 06-Apr-2017    | 06-Apr-2017 |
| 18-Apr-2017                              | Study Plan Amendment 3                            | 18-Apr-2017    | 18-Apr-2017 |
| 04-May-2017                              | Necropsy Necropsy                                 | 04-May-2017    | 04-May-2017 |
| 05-May-2017                              | Study Plan Amendment 4                            | 05-May-2017    | 05-May-2017 |
| 11-May-2017                              | Biochemistry                                      | 11-May-2017    | 11-May-2017 |
| 22-Jun-2017                              | Data Review Veterinary Services                   | 30-Jun-2017    | 30-Jun-2017 |
| 23-Jun-2017                              | Data Review Animal Care                           | 30-Jun-2017    | 30-Jun-2017 |
| 23-Jun-2017 - 27-Jun-2017                | Data Review - Technical Operations                | 30-Jun-2017    | 30-Jun-2017 |
| 27-Jun-2017                              | Data Review - Formulations                        | 30-Jun-2017    | 30-Jun-2017 |
| 27-Jun-2017 - 28-Jun-2017                | Data Review - Clinical Pathology                  | 30-Jun-2017    | 30-Jun-2017 |
| 27-Jun-2017                              | Data Review - Technical Operations                | 30-Jun-2017    | 30-Jun-2017 |
| 28-Jun-2017                              | Study Plan Amendment 5                            | 28-Jun-2017    | 28-Jun-2017 |
| 28-Jun-2017<br>28-Jun-2017               | Data Review - Shipping/Receiving                  | 30-Jun-2017    | 30-Jun-2017 |
| 28-Jun-2017 S                            | Report Preparation                                | 30-Jun-2017    | 30-Jun-2017 |
| 28-Jun-2017                              | Data Review - Necropsy                            | 30-Jun-2017    | 30-Jun-2017 |
| 28-Jun-2017 - 29-Jun-2017                | Data Review - Histology                           | 30-Jun-2017    | 30-Jun-2017 |
| 29-Jun-2017                              | Draft Phase Report - Ophthalmology                | 30-Jun-2017    | 30-Jun-2017 |
| 29-Jun-2017 - 30-Jun-2017                | Draft Report - Materials and Methods              | 30-Jun-2017    | 30-Jun-2017 |
| 29-Jun-2017                              | Report Preparation                                | 30-Jun-2017    | 30-Jun-2017 |
| 29-Jun-2017                              | Data Review - Shipping/Receiving                  | 30-Jun-2017    | 30-Jun-2017 |
| 25-Aug-2017 - 26-Aug-2017                | Final Report                                      | 28-Aug-2017    | 28-Aug-2017 |
| 29-Aug-2017<br>31-Aug-2017 - 01-Sep-2017 | Data Review - Analytical Chemistry                | 01-Sep-2017    | 01-Sep-2017 |
| 29-Aug-2017<br>31-Aug-2017 - 01-Sep-2017 | Draft Phase Report - Dose Formulation<br>Analysis | 01-Sep-2017    | 01-Sep-2017 |
| 18-Sep-2017                              | Study Plan Amendment 6                            | 18-Sep-2017    | 18-Sep-2017 |

#### QUALITY ASSURANCE STATEMENT - Study Number: 5002034

#### **QA INSPECTION DATES**

**Dates Findings Submitted to:** 

| Date(s) of Audit | Phase(s) Audited | Study Director | Study Director<br>Management |
|------------------|------------------|----------------|------------------------------|
| 25-Sep-2017      | Final Report     | 26-Sep-2017    | 26-Sep-2017                  |

In addition to the above-mentioned audits, process-based and/or routine facility inspections were also conducted during the course of this study. Inspection findings, if any, specific to this study were reported by Quality Assurance to the Study Director and Management and listed as a Phase Audit on this Quality Assurance Statement.

The Final Report has been reviewed to assure that it accurately describes the materials and methods, and that

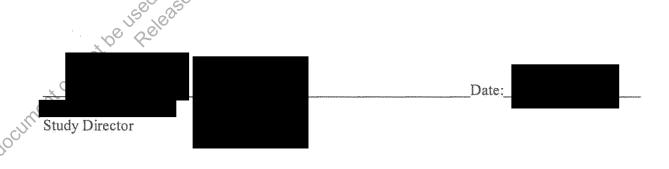
escribes the material and a physical dependent of the period of the peri **Quality Assurance Auditor** 

Date

5002034 Qas

#### COMPLIANCE STATEMENT

The study was performed in accordance with the OECD Principles of Good Laboratory Practice and as accepted by Regulatory Authorities throughout the European Union, United States of America (FDA), Japan (MHLW), and other countries that are signatories to the OECD Mutual Acceptance of Data Agreement.


Any portion of this study conducted in the USA was performed in accordance with the U.S. Department of Health and Human Services, Food and Drug Administration. United States Code of Federal Regulations, Title 21, Part 58: Good Laboratory Practice for Nonclinical Laboratory Studies and as accepted by Regulatory Authorities throughout the European Union (OECD Principles of Good Laboratory Practice), Japan (MHLW), and other countries that are signatories to the OECD Mutual Acceptance of Data Agreement.

Exceptions from the above regulations are listed below.

- Characterization of the Test Item was performed by the Sponsor or Sponsor subcontractor
  according to established SOPs, controls, and approved test methodologies to ensure integrity
  and validity of the results generated; these analyses were not conducted in compliance with
  the GLP or GMP regulations.
- Analysis of cytokines, α2-macroglobulin, α1-acid glycoprotein, anti-therapeutic antibody and PBMCs were conducted using scientifically qualified methods and in accordance with all applicable analytical procedures.
- The purity analysis of the bulk test item was conducted using a scientifically qualified methods and in accordance with applicable analytical procedures.
- Pathology peer review.

This study was conducted in accordance with the procedures described herein. All deviations authorized/acknowledged by the Study Director are documented in the Study Records. The report represents an accurate and complete record of the results obtained.

There were no deviations from the above regulations that affected the overall integrity of the study or the interpretation of the study results and conclusions.



#### 1. RESPONSIBLE PERSONNEL

#### 1.1. Test Facility

**Study Director** 

Test Facility Management

BSc BSc

#### 1.2. Individual Scientists (IS) at Test Facility

Ophthalmology

DMV, MS, DACVO Consultant Ophthalmologist

Analytical Chemistry (Concentration, and Particle size and Purity Analysis) BSc Charles River Laboratories Montreal ULC Senneville, QC, Canada

Immunology (Cytokine, Alpha-2 Macroglobulin and Alpha-1 Glycoprotein Analysis)

MSc

Charles River Laboratories Montreal ULC Sherbooke, QC, Canada

# 1.3. Principal Investigators (PI) at Test Facility-designated Test Site(s)

**Pathology** 

DVM, DACVP, DABT Charles River Laboratories, Inc. Durham, NC, USA

# 1.4. PIs at Sponsor or Sponsor-designated Test Site(s)

Anti-Therapeutic Antibody Analysis

Integrated BioTherapeutics, Inc. Rockville, MD, USA

PBMC Analysis

Southern Research Birmingham, AL, USA

#### **SUMMARY**

a Valiations thereof The objectives of this study were to determine the potential toxicity of mRNA 1647, when given by intramuscular injection for 6 weeks (4 doses) to rats and to evaluate the potential reversibility of any findings following a 2-week recovery period.

The study design was as follows:

Text Table 1 **Experimental Design** 

|       |                   | Dose      | Dose      | Dose                       |         | imals   | is <sub>s</sub> |          |
|-------|-------------------|-----------|-----------|----------------------------|---------|---------|-----------------|----------|
| Group | Test              | Levela    | Volume    | Concentration <sup>a</sup> | Main S  | Study   | Recove          | ry Study |
| No.   | Material          | (µg/dose) | (µL/dose) | (mg/mL)                    | Males   | Females | Males           | Females  |
| 1     | Reference<br>Item | 0         | 200       | 0                          | 10      | 10      | 23              | 5        |
| 2     | mRNA-<br>1647     | 10/8.9    | 200       | 0.05/0.045                 | 10      | 2/10/01 | _               | -        |
| 3     | mRNA-<br>1647     | 30/27     | 200       | 0.15/0.14                  | 10 0    | 010     | -               | -        |
| 4     | mRNA-<br>1647     | 100/89    | 200       | 0.5/0.45                   | (C)10 S | 10      | 5               | 5        |

<sup>- :</sup> Not applicable

The following parameters and endpoints were evaluated in this study: clinical observations consisting of twice daily examinations for mortality/moribundity and weekly detailed examinations; local irritation assessment at least 24- and 72-hour postdose on dosing days and weekly when there were no dosing and during the recovery period; weekly body weights and food consumption measurements; ophthalmic examinations once prior to dosing initiation and during Day 40 (males) or Day 39 (females) of the dosing period; body temperature on Days 1 and 43 at predose and 6 and 24 hours postdose (end of each group); clinical pathology assessment (hematology, coagulation, clinical chemistry, α1-acid glycoprotein and α2-macroglobulin) at termination; cytokine analysis (IL-1β, IL-6, TNF-α, IP-10, MIP-1-α and MCP-1) on Days 1, 15, 29 and 43 at 6 hours postdose and on Day 57; Anti-Therapeutic Antibody (ATA) analysis prior to dosing initiation, on Day 29 (predose), on Day 43 (postdose) and on Day 57; PBMC analysis on Day 44; gross necropsy findings, organ weights, and histopathologic examinations.

There were no mRNA-1647-related changes in food consumption and ophthalmology.

There were no mRNA-1647-related mortalities during the course of the study. One male given the Reference Item (PBS) was found dead on Day 43. The pathological evaluation revealed gross abnormal findings in the adrenal gland, kidneys, thymus; and lungs. Histopathology findings for this control male were incidental and did not explain the cause of death.

mRNA-1647-treated main study and recovery animals had significant detectable antibody responses against CMV gB protein and CMV gH pentamer complex.

Values based on Summary of Analysis (SoA) issued on 16 Mar 2017 / Values based on SoA issued on 31 May 2017 (Refer to memorandum in Appendix 2).

mRNA-1647 elicited both CD4 and CD8 T cell responses to both CMV Pentamer and gB. T cell response (PBMC analysis) were significantly variable within each test group with data trending towards higher T cells responses at higher doses of mRNA-1647.

The primary mRNA-1647-related findings were observed at the site of injection. At all doses, increase in incidence and/or severity with dose of very slight to severe edema was noted at the injection site, following dosing of males and females (peaking 24 hours postdose, generally x decreasing by 72 hours postdose). Although sporadic in occurrences, slight to moderately severe erythema was noted as well, but was only considered mRNA-1647-related at 89 µg/dose. Swelling (soft or firm), noted on the injection site following the third and/or fourth doses, together with localized skin redness at the injection site noted throughout the dosing period, were consistent with the edema and erythema findings. Macroscopically, dose-dependent firm abnormal consistency, dark foci and/or swelling at the injection site correlated with microscopic changes observed at all doses that included minimal to moderate mixed cell inflammation involving the subcutaneous tissues, skeletal muscle, and to a lesser extent the dermis, as well as minimal to moderate subcutaneous edema. Increased incidence and/or severity of minimal to marked mixed cell inflammation was seen in the popliteal and/or inguinal lymph nodes (draining) of all animals at  $\geq 8.9 \,\mu\text{g/dose}$  which correlated macroscopically with enlargement; minimal to marked mixed cell inflammation was frequently observed in the perineurial tissue surrounding the sciatic nerve of animals given  $\geq 8.9 \,\mu\text{g/dose}$ . Sciatic nerve and lymph node inflammatory changes were regarded as secondary to the injection site inflammation. mRNA-1647-related microscopic findings were still noted at the injection site and sciatic nerve of recovery animals; minimal to mild mononuclear cell infiltration and minimal mixed cell inflammation were seen respectively in the injection site and on the sciatic nerves of males and/or females given 89 µg/dose. The absence of mixed cell inflammation and edema, with a shift to minimal to mild mononuclear cell infiltration, at the intramuscular injections sites and a reduced incidence and/or severity of perineurial mixed cell inflammation associated with the sciatic nerves were however all indicative of a partial recovery. Clinical signs (i.e. edema, swelling, erythema and reddening of the skin) observed at the injection site and gross pathology findings as well as microscopic findings observed at the inguinal and popliteal lymph nodes were no longer observed in recovery animals, indicating a complete recovery for these changes.

mRNA-1647-related systemic changes associated with inflammation were also observed in animals given  $\geq 27~\mu g/dose$  and included minimally increased hematopoiesis of the myeloid lineage in the bone marrow. This change was likely a reactive response to the pronounced inflammation observed at the injection site. Other systemic findings included increases in absolute and/or relative spleen weights without correlating histopathology, and minimal to mild decreased cellularity of the splenic periarteriolar lymphoid sheath. Clinical pathology changes suggestive of inflammation were also observed in males and/or females given mRNA-1647 at all doses (unless noted otherwise) and included: minimal to moderate increases in neutrophil, eosinophil and large unstained cell counts with concomitant increases in white blood cell counts, minimal decreases in lymphocyte counts and platelet counts (females at 89  $\mu g/dose$ ), minimal increases in activated partial thromboplastin time and mild increases in fibrinogen, minimal increases in globulin, minimal decreases in albumin, with concomitant decreases in A/G ratio. Increase in body temperature postdose (89  $\mu g/dose$ ), along with increases in acute phase protein Alpha-1-Glycoprotein and Alpha-2-Macroglobulin and elevations of cytokine levels IP-10

(89 μg/dose) and MCP-1, were all suggestive of inflammation. At the end of the 2-week recovery period, Alpha-2-Macroglobulin levels were still higher than controls, but to a lesser extent, the incidence and severity of increased absolute and/or relative spleen weights was reduced, as well as the decrease in cellularity of the periarteriolar lymphoid sheath in the spleen, suggesting only a partial recovery for these aforementioned findings. All other mRNA-1647-related systemic changes returned close to control values and, as such, were considered fully recovered.

When compared to controls, following each dose, a tendency towards lower mean body weight gains was noted in males given  $\geq 8.9~\mu g/dose$  and in females given  $89~\mu g/dose$ ; these changes sometimes reached statistical significance. The changes were only cumulative in males. There were no clear association of the body weight changes with food consumption or clinical observations. The body weight changes were generally comparable or rebounded during the 2-week recovery period.

In conclusion, administration of mRNA-1647 by intramuscular injection for 6 weeks (4 doses) was clinically well tolerated (no mortality, major decreases in body weight and no changes in food consumption or deleterious changes in hematology, coagulation or clinical chemistry parameters) in rats up to 89 µg/dose. Starting at 8.9 µg/dose, generally dose-dependent changes in clinical signs at the injection site, clinical pathology parameters, cytokines and acute protein levels were consistent with an inflammatory response at the injection site. Dose-related target the secovery period and the leaded and the land that had been a supported to the land that the land the land that had the land the land that had the land that had the land that had the land the land that had th organ effects were limited to the injection site, the bone marrow, the inguinal and popliteal lymph nodes, the connective tissue surrounding the sciatic nerve and the spleen of animals given mRNA-1647. At the end of the 2-week recovery period, all changes were partially or fully

#### 3. INTRODUCTION

The objectives of this study were to determine the potential toxicity of mRNA 1647, when given by intramuscular injection for 6 weeks (4 doses) to rats and to evaluate the potential reversibility of any findings following a 2-week recovery period.

The design of this study is based on the study objectives, the overall product development strategy for the Test Item, and the following study design guidelines:

- OECD Guideline 407. Repeated Dose 28-day Oral Toxicity Study in Rodents.
- Committee for Medicinal Products for Human Use (CHMP). Note for Guidance on Repeated Dose Toxicity. CPMP/SWP/1042/99corr.
- ICH Harmonised Tripartite Guideline M3 (R2). Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals.
- Japanese Guidelines for Nonclinical Studies of Drugs Manual (1995). Guidelines for Toxicity Studies of Drugs (Chapter 3, Repeated Dose Toxicity Studies).
- Appendix to Director General Notification, No. 12-Nousan-8147, 24 Nov 2000, Agricultural Production Bureau, Ministry of Agriculture, Forestry and Fisheries of Japan (JMAFF).

The Study Director signed the study plan on 08 Mar 2017, and dosing was initiated on 22 Mar 2017 (males) and on 23 Mar 2017 (females). The in-life phase of the study was completed on 05 May 2017 (main study animals) and on 18 May 2017 (recovery study animals), the date of the last necropsy. The experimental start date was 08 Mar 2017, and the experimental completion date is 20 Sep 2017 (signature of the pathology report). The study plan, study plan amendments, and deviations are presented in Appendix 1.

## 4. MATERIALS AND METHODS

#### 4.1. Test Item

Identification: mRNA-1647

Batch (Lot) No.: MTDP17015

Retest Date: An end-of-use analysis of the bulk Test Item was performed to

demonstrate the stability of the Test Item during the dosing period.

Physical Description: White to off-white lipid nanoparticle dispersion

Concentration: 2.7 / 2.4\*mg/mL

Storage Conditions: Kept in a freezer set to maintain -20°C

Supplier: Moderna Therapeutics, Inc

<sup>\*</sup> Concentration based on SoA released on 16 Mar 2017 / Concentration based on SoA released on 31 May 2017

#### 4.2. Reference Item

Identification: Phosphate-buffered Saline (PBS) pH 7.2

Batch (Lot) No.: 1809319

1854892 1759866 1830677

Expiration Date: Jul 2018

Dec 2018 Feb 2018 Sep 2018

Physical Description: Liquid

Storage Conditions: Kept in a controlled temperature area set to maintain 21°C

#### 4.3. Test and Reference Item Characterization

The Sponsor provided to the Test Facility documentation of the identity, strength, purity, composition, and stability for the Test Item. A Summary of Analysis was provided to the Test Facility and is presented in Appendix 2.

#### 4.4. Analysis of Test Item

A sample (2 vials) of the Test Item were taken on the completion of the dosing period. Analysis of bulk Test Item for concentration, particle size and purity were performed.

The first vial was transferred (on dry ice) to the analytical laboratory at the Test Facility for concentration and particle size analysis.

The second vial was transferred (on dry ice) to the analytical laboratory at the Test Facility for purity analysis.

Concentration, Purity and Particle size analysis were performed by IEX- HPLC, Differential Light Scattering (DLS) and rHPLC using validated or qualified analytical procedures.

#### 4.5. Reserve Samples

For each batch (lot) of Test and Reference Items, a reserve sample (1 mL or 1 vial) was collected and maintained under the appropriate storage conditions by the Test Facility (refer to Appendix 1 for one exception).

#### 4.6. Test and Reference Item Inventory and Disposition

Records of the receipt, distribution, and storage and disposition of Test and Reference Items were maintained. With the exception of reserve samples, all unused Test and Reference Items were returned to the Sponsor after completion of dosing.

#### 4.7. Dose Formulation and Analysis

(Appendix 3)

#### 4.7.1. Preparation of Reference Item

Dose formulation preparations were performed under a laminar flow hood using clean procedures.

The Reference Item, Phosphate-buffered Saline (PBS) pH 7.2, was dispensed on days of dosing (i.e. Days 1, 15, 29 and 43) for administration to Group 1 control animals and was used as required to dilute the bulk Test Item for administration to Groups 2 to 4 animals. The aliquots were stored in a refrigerator set to maintain 4°C until use. They were removed from the refrigerator and allowed to warm to room temperature for at least 30 minutes before dosing.

Details of the preparation and dispensing of the Reference Item have been retained in the Study Records.

#### 4.7.2. Preparation of Test Item

Dose formulation preparations were performed under a laminar flow hood using clean procedures.

Test Item formulations were diluted with PBS pH 7.2, as necessary for administration. The dosing formulations were prepared on each days of dosing (i.e. Days 1, 15, 29 and 43) and were stored in a refrigerator set to maintain 4°C. The dose formulations were allowed to warm to room temperature for at least 30 minutes prior to dosing. Stock vials were used only once.

Empty vials were discarded. Any residual volumes of formulated Test Item and stock Test Item were stored in a refrigerator set at 4°C and were discarded prior to report finalization.

#### 4.7.3. Sample Collection and Analysis

Dose formulation samples were collected for analysis as indicated in Text Table 2.

Text Table 2

Dose Formulation Sample Collection Schedule

| Interval | Homogeneity             | Concentration | Sampling From    |
|----------|-------------------------|---------------|------------------|
| Day 1    | All groups <sup>a</sup> | All groups    | Dosing container |
| Day 43   | N/A                     | All groups    | Dosing container |

N/A = Not applicable.

Samples to be analyzed were transferred on ice pack to the analytical laboratory.

#### 4.7.3.1. Analytical Method

Analyses described below were performed by IEX-HPLC using a validated analytical procedure (CR-MTL Study No.1802050).

<sup>&</sup>lt;sup>a</sup> The homogeneity results obtained from the top, middle and bottom preparations were averaged and utilized as the concentration results.

b Samples were collected on the first preparation of the study and on the last preparation of the study.

#### 4.7.3.2. Concentration and Homogeneity Analysis

On Days 1 and 43 of the study, duplicate sets of samples (0.5 mL) were sent to the analytical laboratory; triplicate set of samples (0.5 mL) were retained at the Test Facility as backup samples. Samples were collected in an appropriate sized glass container from the top, middle and bottom strata of the dosing container for each concentration except for Group 1 dosing formulation and on day 43 where only concentration analysis were required; the formulation was then only sampled from the middle stratum.

Concentration results were considered acceptable if mean sample concentration results were within or equal to  $\pm$  15% of theoretical concentration. Each individual sample concentration result was considered acceptable if it was within or equal to  $\pm$  20%. After acceptance of the analytical results, backup samples were discarded.

Homogeneity results were considered acceptable if the relative standard deviation (RSD) of the mean value at each sampling location was  $\leq 5\%$ .

After acceptance of the analytical results, backup samples were discarded.

#### 4.7.3.3. Stability Analysis

There was no stability analysis performed for concentration used on this study however, end of use stability analysis of the bulk test item was performed at the end of the dosing period.

#### 4.8. Test System

#### **4.8.1.** Receipt

On 08 March 2017, one hundred and twenty Crl:CD(SD) Sprague-Dawley rat (60 males and 60 females) were received from Charles River Canada Inc., St. Constant, QC, Canada. The animals were 08 weeks old and males weighed between 235 and 297 grams and females weighed between 195 and 248 grams at initiation of dosing.

## 4.8.2. Justification for Test System and Number of Animals

The Sprague Dawley rat was chosen as the animal model for this study as it is an accepted rodent species for preclinical toxicity testing by regulatory agencies.

The total number of animals to be used in this study was considered to be the minimum required to properly characterize the effects of the Test Item. This study has been designed such that it does not require an unnecessary number of animals to accomplish its objectives.

At this time, studies in laboratory animals provide the best available basis for extrapolation to humans and are required to support regulatory submissions. Acceptable models which do not use live animals currently do not exist.

#### 4.8.3. Animal Identification

Each animal was identified using a subcutaneously implanted electronic identification chip.

#### 4.8.4. Environmental Acclimation

A minimum acclimation period of 14 days was allowed between animal receipt and the start of dosing in order to accustom the animals to the laboratory environment (refer to Appendix 1).

#### 4.8.5. Selection, Assignment, Replacement, and Disposition of Animals

Animals were assigned to groups by a stratified randomization scheme designed to achieve similar group mean body weights. Males and females were randomized separately. Animals in poor health or at extremes of body weight range were not assigned to groups.

Before the initiation of dosing, assigned animals with compromising background ophthalmic findings, that were considered unsuitable for use in the study, were replaced by alternate animals obtained from the same shipment and maintained under the same environmental conditions.

The alternate animals were used as replacements on the study within approximately 4 days.

#### 4.8.6. Husbandry

#### 4.8.6.1. Housing

Animals were group housed (up to 3 animals of the same sex and same dosing group together) in polycarbonate cages containing appropriate bedding equipped with an automatic watering valve. These housing conditions were maintained all along the study. The rooms in which the animals were kept was documented in the study records.

Animals were separated during designated procedures/activities. Each cage was clearly labeled with a color-coded cage card indicating study, group, animal number(s), and sex. Cages were arranged on the racks in group order. Control group animals were housed on a separate rack from the Test Item-dosed animals.

#### 4.8.6.2. Environmental Conditions

Target temperatures of 19°C to 25°C with a relative target humidity of 30% to 70% were maintained. A 12-hour light/12-hour dark cycle was maintained, except when interrupted for designated procedures.

#### 4.8.6.3. Food

PMI Nutrition International Certified Rodent Chow No. 5CR4 (14% protein) was provided ad libitum throughout the study, except during designated procedures. The same diet in meal form was provided to one female animal from Group 4 as warranted by clinical signs (broken/damaged incisors). On few occasions, wet pellets were also provided to Group 4 animals as warranted by clinical signs.

The feed was analyzed by the supplier for nutritional components and environmental contaminants. Results of the analysis are provided by the supplier and are on file at the Test Facility.

It is considered that there are no known contaminants in the feed that would interfere with the objectives of the study.

#### 4.8.6.4. Water

Municipal tap water after treatment by reverse osmosis and ultraviolet irradiation was freely available to each animal via an automatic watering system (except during designated procedures).

Periodic analysis of the water is performed, and results of these analyses are on file at the Test Facility.

It is considered that there are no known contaminants in the water that could interfere with the outcome of the study.

#### 4.8.6.5. Animal Enrichment

Animals were socially housed for psychological/environmental enrichment and were provided with items such as a hiding device and a chewing object, except when interrupted by study procedures/activities.

#### 4.8.6.6. Veterinary Care

Veterinary care was available throughout the course of the study, and animals were examined by the veterinary staff as warranted by clinical signs or other changes. All veterinary examinations were documented in the study records. No veterinary treatments were necessary during the course of the study.

Reaction (Skin scab) to non-toxic pen used for marking the injection area was observed for control Animals Nos. 1510 and 1514 on Day 21 and 38, respectively. Consequently, no marking of the injection site was performed for these animals after that day.

#### 4.9. Experimental Design

Text Table 3
Experimental Design

|       |           | Dose               | ODose     | Dose                                                             | Animals No. |                 |       |          |
|-------|-----------|--------------------|-----------|------------------------------------------------------------------|-------------|-----------------|-------|----------|
| Group | Test      | Level <sup>a</sup> | Volume    | olume   Concentration <sup>a</sup>   Main Study   Recovery Study |             | Main Study Reco |       | ry Study |
| No.   | Material  | (μg/dose)          | (µL/dose) | (mg/mL)                                                          | Males       | Females         | Males | Females  |
|       |           | 12, 11,            |           |                                                                  |             |                 |       | 1511,    |
| 1     | Reference | 2500 O             | 200       | 0                                                                | 1001-       | 1501-           | 1011- | 1612,    |
| 1     | ltem      | 250 0              | 200       | 0                                                                | 1010        | 1510            | 1015  | 1513-    |
|       | 113 16    |                    |           |                                                                  |             |                 |       | 1515     |
|       | " 100 So  |                    |           |                                                                  | 2001,       |                 |       |          |
| 2     | mRNA-     | 10/8.9             | 200       | 0.05/0.045                                                       | 2102,       | 2501-           |       |          |
| 2     | 1647      | 10/8.9             | 200       | 0.03/0.043                                                       | 2003-       | 2510            | _     | -        |
| " Co. |           |                    |           |                                                                  | 2010        |                 |       |          |
| CUL   |           |                    |           |                                                                  | 3001,       | 3501-           |       |          |
| 100   | mRNA-     |                    |           |                                                                  | 3002,       | 3503,           |       |          |
| 3     | 1647      | 30/27              | 200       | 0.15/0.14                                                        | 3103,       | 3604,           | _     | -        |
|       | 1047      |                    |           |                                                                  | 3004-       | 3505-           |       |          |
|       |           |                    |           |                                                                  | 3010        | 3510            |       |          |
| 4     | mRNA-     | 100/89             | 200       | 0.5/0.45                                                         | 4001-       | 4501-           | 4011- | 4511-    |
| 4     | 1647      | 100/69             | 200       | 0.5/0.45                                                         | 4010        | 4510            | 4015  | 4515     |

<sup>- :</sup> Not applicable

<sup>&</sup>lt;sup>a</sup> Values based on SoA issued on 16 Mar 2017 / Values based on SoA issued on 31 May 2017.

Prior to the start of dosing, animals were rejected from the study due to compromising background ophthalmic findings and were replaced with spare animals. The final allocation of animals is listed under Text Table 3. All animals remaining unassigned to groups after Day 4

The Test and Reference Items were administered to the appropriate animals via intramuscular injection into the lateral compartment of the thigh on Days 1, 15, 29 and 43, the injection was alternated on each dosing occasion (site 1= left site 2 was administered using a crui designated as Day 1.

The injection area was marked as frequently as required to allow appropriate visualization of administration sites (refer to Section 4.8.6.6 for exceptions). Hair may have been clipped or shaved, if required, to improve visualization of the injection sites. The injection site was documented in the raw data for each dose administered.

#### 4.9.2. Justification of Route and Dose Levels

The intramuscular route of exposure was selected because this is the intended route of human exposure.

The dose levels for this toxicology study were chosen to approximate a substantial multiple of the anticipated clinical starting dose and top clinical dose. The highest dose to be tested was expected to represent the intended maximum human clinical dose and volume and was administered by the clinical route (intranuscular). At this dose level, minimal systemic toxicity was expected, but it was possible mild to moderate injection site reaction (redness, swelling) and potentially elevation of systemic cytokine/acute phase markers may have been observed. The mid- and low-dose were selected to evaluate the dose-dependent effect of this compound.

#### 4.10. In-life Procedures, Observations, and Measurements

## 4.10.1. Mortality/Moribundity Checks

Throughout the study, animals were observed for general health/mortality and moribundity twice daily, once in the morning and once in the afternoon. Animals were not removed from cage during observation, unless necessary for identification or confirmation of possible findings.

#### 4.10.2. Clinical Observations

#### 4.10.2.1. Detailed Clinical Observations

The animals were removed from the cage, and a detailed clinical observation was performed weekly during the dosing and recovery periods, beginning during Week -1.

#### 4.10.3. Local Irritation Assessment

On days of dosing and at least 24 and 72 hours postdose (end of each group), all animals had the dose injection site examined for signs of erythema/edema. Examinations were also performed weekly when there was no dosing and during the recovery period. Following Day 43 dosing, no assessment was performed on Main Study animals at 72 hours postdose as these animals were sent to necropsy on Day 44.

Observations were scored according to the Local Irritation Assessment scoring table as follows:

| Erythema (Redness)                                                         | Score   |
|----------------------------------------------------------------------------|---------|
| No erythema                                                                | 0 5     |
| Very slight erythema (barely perceptible)                                  | 1 .:(0) |
| Mild erythema                                                              | 2       |
| Moderate to severe erythema                                                | 3       |
| Severe erythema (beet redness to slight eschar formation, injury in depth) | 4       |
| Notable dermal lesion (maximized)                                          | M       |
| Edema (Swelling)                                                           |         |
| No edema                                                                   | 0       |
| Very slight edema (barely perceptible)                                     | 1       |
| Slight edema                                                               | 2       |
| Moderate edema                                                             | 3       |
| Severe edema                                                               | 4       |

#### 4.10.4. Body Weights

4.10.4. Body Weights

Animals were weighed individually weekly, starting during Day -1. A fasted weight was recorded on the day of necropsy. Terminal body weight was not collected from animals found dead.

#### 4.10.5. Food Consumption

Food consumption was quantitatively measured starting on Day -9 and weekly throughout the dosing and recovery periods (refer to Appendix 1 for additional details).

#### 4.10.6. Ophthalmic Examinations

Animals had funduscopic (indirect ophthalmoscopy) and biomicroscopic (slit lamp) examinations once prior to dosing (all animals) and on Day 40 for males and Day 39 for females. As there were no Test Item-related ophthalmoscopic findings at the end of the dosing period, examinations were not performed during the recovery phase. The mydriatic used was atropine 0.126%.

### 4.10.7. Body Temperature

Rectal body temperature was recorded on un-sedated animals on Days 1 and 43 at predose and 6 and 24 hours postdose (end of each group). After first dose administration, body temperature of Group 4 female animals was monitored until 48 post dose, after which body temperature normal range (36.0°C to 38.0°C) was recovered.

#### 4.11. Laboratory Evaluations

#### 4.11.1. Clinical Pathology

#### 4.11.1.1. Sample Collection

Blood was collected from the abdominal aorta following isoflurane anesthesia. After collection, samples were transferred to the appropriate laboratory for processing.

Animals were fasted overnight before blood sampling (for clinical chemistry). Samples were collected according to Text Table 4.

Text Table 4 Samples for Clinical Pathology Evaluation

| Group Nos.          | ıp Nos. Time Point |   | Hematology Coagulation |        | α1-acid<br>glycoprotein/<br>α2-macroglobulin |
|---------------------|--------------------|---|------------------------|--------|----------------------------------------------|
| 1 to 4 <sup>a</sup> | Day 44             | X | X                      | X NO   | X                                            |
| 1 and 4             | Day 57             | X | X                      | O, XO, | X                                            |

X = Sample collected

#### 4.11.1.2. Hematology

Blood samples (target volume of 0.5 mL collected in a tube containing EDTA as anticoagulant) were analyzed for the parameters specified in Text Table 5.

Text Table 5 Hematology Parameters

| 0, 10                                     | 7                                |
|-------------------------------------------|----------------------------------|
| Red blood cell count                      |                                  |
| Hemoglobin concentration                  | White blood cell count           |
| Hematocrit                                | Neutrophil count (absolute)      |
| Mean corpuscular volume                   | Lymphocyte count (absolute)      |
| Red Blood Cell Distribution Width         | Monocyte count (absolute)        |
| Mean corpuscular hemoglobin concentration | Eosinophil count (absolute)      |
| Mean corpuscular hemoglobin               | Basophil count (absolute)        |
| Reticulocyte count (absolute)             | Large unstained cells (absolute) |
| Platelet count                            |                                  |

A blood smear was prepared from each hematology sample. Blood smears were labeled, stained, and stored. Blood smears were read to investigate results for some animals.

# 4.11.1.3. Coagulation

ampl auticoagulant Text Table 6. Blood samples (target volume of 1.2 mL collected in a 1.3 mL tube containing citrate as anticoagulant) were processed for plasma, and plasma was analyzed for the parameters listed in

Text Table 6 **Coagulation Parameters** 

| Activated partial thromboplastin time | Prothrombin time |  |  |
|---------------------------------------|------------------|--|--|
| Fibrinogen                            | Sample Quality   |  |  |

Samples were only collected from those animals scheduled for euthanasia on Day 44.

#### 4.11.1.4. Clinical Chemistry

Blood samples (target volume of 0.7 mL collected in serum separator tubes) were processed for serum, and the serum was analyzed for the parameters specified in Text Table 7.

Text Table 7 Clinical Chemistry Parameters

| Alanine aminotransferase   | Total protein          |
|----------------------------|------------------------|
| Aspartate aminotransferase | Albumin                |
| Alkaline phosphatase       | Globulin               |
| Gamma-glutamyltransferase  | Albumin/globulin ratio |
| Creatine Kinase            | Glucose                |
| Total bilirubin            | Cholesterol            |
| Urea nitrogen              | Triglycerides          |
| Creatinine                 | Sodium                 |
| Calcium                    | Potassium              |
| Phosphorus                 | Chloride               |
|                            | Sample Quality         |

## 4.11.1.5.α1-acid Glycoprotein and α2-macroglobulin Analysis

Blood (target volume of 0.7 mL collected in a serum separator tube) was obtained via abdominal aorta following isoflurane anesthesia before scheduled necropsy for all animals.

Blood samples were allowed to clot at ambient room temperature, until centrifugation which was carried out as soon as practical. The samples were centrifuged for 10 minutes in a refrigerated centrifuge (set to maintain 4°C) at 2400 g. Samples were processed to serum by the Immunology Department. Serum were aliquoted into 1 x 75  $\mu$ L aliquot for  $\alpha$ 2-macroglobulin and 2 x 75  $\mu$ L aliquot and a leftover (when available) for  $\alpha$ 1-acid glycoprotein. All samples were stored in a freezer set to maintain -20°C, pending analysis.

Analysis for  $\alpha$ 1-acid glycoprotein and  $\alpha$ 2-macroglobulin was conducted using a qualified ELISA method by the Immunology Department. The procedure to be followed along with the assay acceptance criteria was detailed in the appropriate analytical procedure.

Samples were analyzed in duplicate. Any residual/retained samples were discarded prior to report finalization.

### 4.11.2. Laboratory Investigation (Cytokines Analysis)

Blood was collected from the jugular vein of recovery animals. After collection, blood samples for serum were allowed to clot at ambient room temperature and blood samples for plasma were transferred on wet ice to the appropriate laboratory for processing.

# Text Table 8 Sample Collection Schedule

| Target Blood Volume (mL) |                                                                                    |                           | 0.5                                                               | 0.5                                       |                          |      |  |  |
|--------------------------|------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------|------|--|--|
|                          | Anticoagulant                                                                      |                           | Anticoagulant None (SST)  (refer to Appendix 1 for one exception) |                                           | (refer to Appendix 1 for | EDTA |  |  |
| Ce                       | ntrifugat                                                                          | ion setting               |                                                                   | 21105                                     |                          |      |  |  |
|                          | Timep                                                                              | oints                     |                                                                   | Sample Type                               |                          |      |  |  |
| Day Hrs Hemales No.      |                                                                                    |                           | IFN-α*                                                            | IL-1β, IL-6, TNF-α, IP-10, MIP-1-α, MCP-1 |                          |      |  |  |
| 1                        | 1 6 1011-1015,                                                                     |                           | X                                                                 | X                                         |                          |      |  |  |
| 15                       | 6                                                                                  | 4011-4015                 | X                                                                 | X                                         |                          |      |  |  |
| 29                       | 6                                                                                  | 1511 1610                 | X                                                                 | XOTOL                                     |                          |      |  |  |
| 43                       | 6                                                                                  | 1511, 1612,<br>1513-1515, | X                                                                 | X                                         |                          |      |  |  |
| 57                       | N/A                                                                                | 4511-4515                 | X                                                                 | No Xioc                                   |                          |      |  |  |
|                          | Mat                                                                                | rix                       | Serum                                                             | Plasma                                    |                          |      |  |  |
| V                        | Volume per aliquot (µL)  Number of aliquot(s)  Storage condition (set to maintain) |                           | all volume                                                        | Sall volume                               |                          |      |  |  |
| N                        |                                                                                    |                           | 1                                                                 | 1 1                                       |                          |      |  |  |
| 1                        |                                                                                    |                           | -80°C                                                             | -80°C                                     |                          |      |  |  |
|                          | Responsi                                                                           | ble Lab                   | CR-SHB                                                            | CR-SHB                                    |                          |      |  |  |

X = Sample collected; N/A = not applicable

The samples were analyzed by the Immunology department. Analysis for IL-1β, IL-6, TNF-α, IP-10, MIP-1-α and MCP-1 were conducted using a multiplex Luminex method. The procedures to be followed during the course of this study along with the assays acceptance criteria were detailed in the appropriate analytical procedure. Samples were analyzed in duplicate.

An Immunology Report for cytokine analysis is included as an appendix to the Final Report.

#### 4.11.3. Anti-Therapeutic Antibody (ATA) Analysis

Before the initiation of dosing, on Day 29 (before dose administration, all animals), on Day 43 (post dose administration, main animals only) and on Day 57 (recovery animals), target blood volume of 0.5 mL was collected in a serum separator tube by jugular venipuncture from the appropriate animals.

Samples were mixed gently and allowed to clot at ambient room temperature until centrifugation, which was carried out as soon as practical. The samples were centrifuged for 10 minutes in a refrigerated centrifuge (set to maintain 4°C) at 1200 g. The resultant serum was separated, transferred to uniquely labeled clear polypropylene tubes, frozen immediately over dry ice and transferred to a freezer set to maintain -80°C until shipment on dry ice to Integrated BioTherapeutics, Inc., Rockville, MA, USA for analysis.

The samples were analyzed for rat anti-CMV antibodies using a qualified ELISA method.

An Anti-therapeutic Antibody Report is included as an appendix to the Final Report.

<sup>\*</sup> The assay validation of IFN-α did not work appropriately and serum samples analysis was not conducted.

#### 4.12. PBMC Analysis

On Day 44, blood (target volume of 0.5 mL collected in a tube containing Sodium Heparin as Samples were analyzed using a qualified method.

An Immunology Report for PBMC analysis is included as an appendix to the Final Report.

4.13. Terminal Procedures

Terminal procedures are summarized in Terminal procedures anticoagulant) was obtained by jugular venipuncture from main animals only. Samples were

Text Table 9 **Terminal Procedures** 

| Ro. of Animals Group No. M F |    | Scheduled | Scheduled Necropsy Procedures |          |                                  | and embe                 |                          |                                 |
|------------------------------|----|-----------|-------------------------------|----------|----------------------------------|--------------------------|--------------------------|---------------------------------|
|                              |    | F         | Euthanasia<br>Day             | Necropsy | Tissue O  Gecropsy Collection Wo |                          | Histology                | Histopathology                  |
| 1                            | 10 | 10        |                               |          |                                  | Olice                    | Full Tissue <sup>a</sup> | Full Tissue <sup>a</sup>        |
| 2                            | 10 | 10        | 44                            | X        |                                  |                          | Full Tissue <sup>a</sup> | Gross Lesions<br>Target Tissues |
| 3                            | 10 | 10        |                               |          | MOPORISALIE                      | 12/4                     | Full Tissue <sup>a</sup> | Gross Lesions<br>Target Tissues |
| 4                            | 10 | 10        |                               | · ·      | 1110 10.                         |                          | Full Tissue <sup>a</sup> | Full Tissue <sup>a</sup>        |
| 1                            | 5  | 5         |                               | 61       | 10.40                            | v                        | Full Tissue <sup>a</sup> | Full Tissue <sup>a</sup>        |
| 4                            | 5  | 5         | 57                            | Xillo    | ,X                               | X                        | Full Tissue <sup>a</sup> | Full Tissue <sup>a</sup>        |
| Unscheduled Deaths           |    |           | NX N                          | X        | -                                | Full Tissue <sup>a</sup> | Full Tissue <sup>a</sup> |                                 |

X = Procedure conducted; - = Not applicable.

#### 4.13.1. Unscheduled Deaths

A complete necropsy was conducted for one control animal assigned to recovery study that died during dosing, and specified tissues were saved. Animal was refrigerated before necropsy to minimize autolysis.

## 4.13.2. Scheduled Euthanasia

Main study and recovery animals surviving until scheduled euthanasia had a terminal body weight recorded, samples for laboratory evaluation were collected (as appropriate), and were euthanized by exsanguination by incision from the abdominal agra following isoflurane anesthesia. The animals were euthanized rotating across dose groups such that similar numbers of animals from each group, including controls, were necropsied throughout the day. Animals were fasted overnight before their scheduled necropsy.

#### **4.13.3.** Necropsy

Main study and recovery animals were subjected to a complete necropsy examination, which included evaluation of the carcass and musculoskeletal system; all external surfaces and orifices;

See Tissue Collection and Preservation table for listing of tissues.

cranial cavity and external surfaces of the brain; and thoracic, abdominal, and pelvic cavities with their associated organs and tissues.

Necropsy procedures were performed by qualified personnel with appropriate training and experience in animal anatomy and gross pathology. A veterinary pathologist, or other suitably qualified person, was available.

#### 4.13.4. Organ Weights

The organs identified in Text Table 10 were weighed at necropsy for all scheduled euthanasia animals. Organ weights were not recorded for animal found dead. Paired organs were weighed together. In the event of gross abnormalities, in addition to the combined weight, the weight of each organ of a pair may be taken and entered as a tissue comment. Organ to body weight ratio (using the terminal body weight) and organ to brain weight ratios were calculated.

Text Table 10 Organs Weighed at Necropsy

| Brain                       | Liver               |
|-----------------------------|---------------------|
| Epididymis <sup>a</sup>     | Sung                |
| Gland, adrenala             | Ovarya              |
| Gland, pituitary            | Spleen              |
| Gland, prostate             | Testis <sup>a</sup> |
| Gland, thyroid <sup>a</sup> | Thymus              |
| Heart                       | Uterus              |
| Kidney <sup>a</sup>         | 5000                |

Paired organ weight.

# 4.13.5. Tissue Collection and Preservation

Just ide Juffered for Juffered for Juffered for Juffered for Juffered for Juffered Juffered Juffered Juffered Juffered for Representative samples of the tissues identified in Text Table 11 were collected from all animals and preserved in 10% neutral buffered formalin, unless otherwise indicated.

# Text Table 11 Tissue Collection and Preservation

| Injection site <sup>c</sup>    | Large intestine, rectum                                                                                                                       |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Animal identification          | Larynx                                                                                                                                        |
| Artery, aorta                  | Liver                                                                                                                                         |
| Body cavity, nasal             | Lung                                                                                                                                          |
| Bone marrow smear              | Lymph node, mandibular                                                                                                                        |
| Bone marrow                    | Lymph node, mesenteric                                                                                                                        |
| Bone, femur                    | Lymph node, mandioular  Lymph node, mesenteric  Lymph node, Inguinal <sup>e</sup> Lymph node, Popliteal <sup>e</sup> Small intesting dyndenum |
| Bone, sternum                  | Lymph node, Popliteal <sup>e</sup>                                                                                                            |
| Brain <sup>d</sup>             | Sman intestine, duodenum                                                                                                                      |
| Cervix                         | Small intestine, ileum                                                                                                                        |
| Epididymis                     | Small intestine, jejunum                                                                                                                      |
| Esophagus                      | Muscle, skeletal                                                                                                                              |
| Eye <sup>a</sup>               | Nerve, optic                                                                                                                                  |
| Gland, adrenal                 | Nerve, sciatic                                                                                                                                |
| Gland, harderian               | Ovary                                                                                                                                         |
| Gland, mammary                 | Pancreas                                                                                                                                      |
| Gland, parathyroid             | Skin                                                                                                                                          |
| Gland, pituitary               | Spinal cord                                                                                                                                   |
| Gland, prostate                | Spleen                                                                                                                                        |
| Gland, salivary                | Stomach                                                                                                                                       |
| Gland, seminal vesicle         | Testis <sup>b</sup>                                                                                                                           |
| Gland, thyroid                 | Thymus                                                                                                                                        |
| Gross lesions/masses           | Tongue                                                                                                                                        |
| Gut-associated lymphoid tissue | Trachea                                                                                                                                       |
| Heart                          | Spinal cord Spleen Stomach Testis <sup>b</sup> Thymus Tongue Trachea Urinary bladder Uterus Vagina                                            |
| Kidney                         | Uterus                                                                                                                                        |
| Large intestine, cecum         | Vagina                                                                                                                                        |
| Large intestine, colon         |                                                                                                                                               |

- <sup>a</sup> Preserved in Davidson's fixative.
- b Preserved in Modified Davidson's fixative.
- <sup>c</sup> Thigh site used for the last injection.
- d Seven brain levels examined included olfactory bulb (Examine in Body cavity, nasal section level 4).
- <sup>e</sup> Lymph node draining the last administration site used (unilateral examination).

#### 4.13.6. Histology

Tissues identified in Text Table 11 (except animal identification, bone marrow smears and larynx) were embedded in paraffin, sectioned, mounted on glass slides, and stained with hematoxylin and eosin.

## 4.13.7. Histopathology

Histopathological evaluation was performed by a board-certified veterinary pathologist.

#### 4.13.8. Peer Review

(Appendix 20)

A pathology peer review was conducted by a Sponsor-designated pathologist; PhD from Experimental Pathology Laboratories, Inc., Research Triangle Park, NC 27709, USA.

The peer review statement was included as an appendix to the Final Report.

#### 4.13.9. Bone Marrow Smear Analysis

Two bone marrow smears were prepared from each euthanized animal, air dried, stained with Wright's Giemsa stain, and not coverslipped. Bone marrow smears were not evaluated. calculated between each scheduled interval as well as between the beginning and end of each phase calculated against 41.

#### **CONSTRUCTED VARIABLES**

**Body Weight Gains** 

Organ Weight relative to Body Weight

scheduled intervals

Organ Weight relative to Brain Weight calculated against the brain weight for scheduled

intervals

All results presented in the tables of the report are calculated using non-rounded values as per the raw data rounding procedure and may not be exactly reproduced from the individual data presented.

#### STATISTICAL ANALYSIS

Numerical data collected on scheduled occasions for the listed variables were analyzed as indicated according to sex and occasion. Descriptive statistics number, mean and standard deviation (or %CV or SE when deemed appropriate) were reported whenever possible. Values may also be expressed as a percentage of predose or control values when deemed appropriate. Inferential statistics were performed according to the matrix below when possible, but excluded semi-quantitative data, and any group with less than 3 observations.

Text Table 12 Statistical Matrix

|                                       | Statistical Method         |
|---------------------------------------|----------------------------|
| Variables for Inferential Analysis    | Parametric/ Non-Parametric |
| Body Weight                           | X                          |
| Hematology Variables                  | X                          |
| Coagulation Variables                 | X                          |
| Clinical Chemistry Variables          | X                          |
| Cytokines                             | X                          |
| Body Temperature                      | X                          |
| α2-macroglobulin                      | X                          |
| α1-acid glycoprotein                  | X                          |
| Organ Weights                         | X                          |
| Body Weight Gains                     | X                          |
| Organ Weight relative to Body Weight  | X                          |
| Organ Weight relative to Brain Weight | X                          |

The following pairwise comparisons were made:

Group 2 Group 1

Group 3 Group 1

Group 4 Group 1 VS.

#### 6.1. Parametric/Non-parametric

Levene's test was used to assess the homogeneity of group variances parametric assumption at the 5% significance level. Datasets with at least 3 groups were compared using an overall one-way ANOVA *F*-test if Levene's test was not significant or the Kruskal-Wallis test if it was. If the overall *F*-test or Kruskal-Wallis test was found to be significant, then the above pairwise comparisons were conducted using Dunnett's or Dunn's test, respectively.

Datasets with 2 groups (the designated control group and 1 other group) were compared using a *t*-test if Levene's test was not significant or Wilcoxon Rank-Sum test if it was.

All significant pairwise comparisons were reported at the 0.1, 1, and 5% significance levels.

#### 7. COMPUTERIZED SYSTEMS

Critical computerized systems used in the study are listed below or presented in the appropriate Phase Report. All computerized systems used in the conduct of this study have been validated; when a particular system has not satisfied all requirements, appropriate administrative and procedural controls were implemented to assure the quality and integrity of data.

Text Table 13 Critical Computerized Systems

| System Name                                   | Version           | Description of Data Collected and/or Analyzed                                                                                                                                                |  |  |
|-----------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Provantis                                     | 8 2               | In-life; clinical pathology; postmortem                                                                                                                                                      |  |  |
| Dispense                                      | 8 Shiok           | Test Material receipt, accountability and/or formulation activities                                                                                                                          |  |  |
| In-house reporting software Nevis (using SAS) | Nevis 2 (SAS 9.2) | Statistical analyses of numerical in-life, clinical pathology and postmortem data                                                                                                            |  |  |
| Mesa Laboratories AmegaView CMS               | v3.0 Build 1208.8 | Continuous Monitoring System. Monitoring of standalone fridges, freezers, incubators, and selecte laboratories to measure temperature, relative humidit and CO <sub>2</sub> , as appropriate |  |  |
| Johnson Controls Metasys                      | MVE 7.0 and 4.0   | Building Automation System. Control of HVAC and other building systems, as well as temperature/humidity control and trending in selected laboratories and animal rooms                       |  |  |
| Empower 3 (Waters Corporation)                | Build 3471 SR1    | Data acquisition for dose formulation analysis, including regression analysis and measurement of concentration and recovery of dose formulations using HPLC                                  |  |  |
| Bio Plex Manager (Bio-Rad)                    | 6.1               | Cytokine data collection                                                                                                                                                                     |  |  |
| Softmax Pro GxP                               | 5.4.6             | Cytokine data collection                                                                                                                                                                     |  |  |
| Watson LIMS                                   | 7.4.2 SP1         | Sample tracking/analysis/regression - biomarkers                                                                                                                                             |  |  |
| Dynamics (Wyatt)                              | 7.1.9.3           | Data acquisition for particle size analysis for the test item using DLS                                                                                                                      |  |  |

#### RETENTION OF RECORDS, SAMPLES, AND SPECIMENS

All study-specific raw data, documentation, study plan, samples, specimens, and final reports Electronic data generated by the Test Facility were archived as noted above, except that the data collected using Provantis 8 and reporting files stored on SDMS, which were archived at the Charles River Laboratories facility location in Wilmington MAA

All records, retained samples and specimens, and reports generated from phases or segments performed by Test Facility-designated subcontractors were returned to the Test Facility for archiving Archival location and duration are detailed in the applicable PI report(s) or details regarding the retention of the materials were provided to the Study Director for inclusion in the Final Report.

as genre returne.
applicable PI
Study Director fo
Study Director fo
Study Director fo
And the life and the All records, retained samples and specimens, and reports generated from phases or segments performed by Sponsor-designated subcontractors were returned to the Test Facility for archiving Archival location and duration are detailed in the applicable PI report(s) or details regarding the retention of the materials were provided to the Study Director for inclusion in the Final Report.

#### RESULTS

#### 9.1. Dose Formulation Analyses

Dose formulation concentration results were within specification. Homogeneity testing showed that the formulation technique used produced homogeneous preparations.

9.2. End of Use Ball To Sorvaliation

#### 9.2. End of Use Bulk Test Item Analysis

(Appendix 3)

The bulk Test Item analysis demonstrated that the Test Item was suitable for use during the study period; the concentration, purity and particle size results obtained were consistent with the revised Summary of Analysis.

#### 9.3. Mortality

(Appendix 4)

There were no mRNA-1647-related mortalities during the course of the study.

One male (No. 1014) given the Reference Item was found dead on Day 43. The pathological evaluation revealed a small, dark discoloration, and soft abnormal consistency of the right adrenal gland without histopathology correlates; a dark discoloration of the corticomedullary junction of the kidneys without histopathology correlates; a dark focus and dark discoloration of the thymus (incidental thymic hemorrhage); and a failure of the lungs to collapse (lung congestion). Histopathology findings for this control male were incidental and did not explain the cause of death for this animal.

9.4. Clinical Observations
(Table 1 and Appendix 5)
On the day following the last dosing occasion, a dose-related (in severity) soft swelling was noted on the last injection site (i.e. the right hindlimb). Firm swelling (severe) was also noted at the injection site of individual males and females given 89 µg/dose. The firm swelling was noted two days following the third dose and, for one male only, 1 day following the last dose. In addition, skin redness at the injection site, was noted at a higher incidence throughout the dosing period for animals given 89 µg/dose.

Given the absence of swelling or redness at the injection site 3 days following the last dose and 9.5. Local Irritation Assessment
(Appendix 5)
Slight throughout the recovery period, these clinical observations were considered fully reversed.

Slight to severe edema was noted at the injection site following dosing of males and females given  $\geq 8.9 \,\mu\text{g/dose}$ . The incidence and severity of these findings were dose-dependent. The apex of severity was noted 24 hours postdose and generally decreased 72 hours postdose.

Sporadic, slight to (rare) moderately severe erythema, noted at the injection site, was considered mRNA-1647-related only at 89 µg/dose and occurred generally following the third and fourth (last) doses.

Edema and erythema were no longer observed one week into the recovery period, and as such, they were considered completely reversed.

#### 9.6. Body Weights and Body Weight Gains

(Figure 1, Figure 2, Table 2, Table 3, Appendix 6 and Appendix 7)

When compared to controls, following each dose, a tendency towards lower mean body weight gains was noted in males given  $\geq 8.9 \,\mu\text{g/dose}$  and in females given  $89 \,\mu\text{g/dose}$ ; these changes sometimes reached statistical significance. The changes were only cumulative in males and were down to 0.86X controls from Day -1 to 42. The body weight changes were generally comparable or rebounded during the 2-week recovery period.

9.7. Food Consumption

(Table 4 and Appendix 8)

Given the variability in weekly food consumption results, the occasional weekly changes, with no clear dose-relationship, were considered not mRNA-1647-related.

9.8. Opthalmology
(Appendix 15)
There were no mRNA-1647-related ocular changes observed during the course of the study. The findings noted were age-related or incidental in origin and to be expected in this population of animals.

#### 9.9. Body Temperature

(Table 5 and Appendix 9)

In general body temperatures were within normal ranges of 36-38°C. When compared to control animals and pre-dose body temperature measurements, the mean body temperature appeared minimally increased in males and females given 89 µg/dose, 6 and/or 24 hours post Day 1 and Day 43 doses. These statistically-significant changes were considered mRNA-1647-This document cannot be

#### 9.10. Hematology

(Table 6 and Appendix 10)

mRNA-1647-related hematology changes were noted for males and females starting at 8.9 µg/dose and included increases in neutrophil (NEUT), eosinophil (EOS) and/or large unstained cell (LUC) counts (with concomitant increases in white blood cell [WBC] counts) and decreases in lymphocyte (LYMPH) and platelet (PLT) counts. These changes are illustrated in SiOns of War Text Table 14.

Text Table 14 **Hematology Changes** 

| Dose (μg/dose) |       | 8.9       |          | 27       | SUS, 8 | 9       |
|----------------|-------|-----------|----------|----------|--------|---------|
| Parameter      | Males | Females   | Males    | Females  | Males  | Females |
| WBC            |       |           |          |          | 10,00  |         |
| Day 44         | -     | 1.2       | 1.3      | 1.4      | 1.8    | 1.8     |
| Day 57         |       |           |          | , ' ن    | 0 1.1  | 1.1     |
| NEUT           |       |           |          | 31, 40,  |        |         |
| Day 44         | 1.8   | 4.6       | 4.4      | 6.2      | 7.2    | 8.9     |
| Day 57         |       |           |          | 190 ° 20 | 0.63   | 0.95    |
| LYMPH          |       |           | .6       | 10 13    |        |         |
| Day 44         | 0.84  | 0.73      | 0.74     | 0.73     | 0.77   | 0.83    |
| Day 57         |       |           | 67,00,00 |          | 1.2    | 1.2     |
| EOS            |       | -00       | Jil JO   |          |        |         |
| Day 44         | 2.6   | 4.0       | 2.8      | 3.9      | 3.8    | 6.5     |
| Day 57         |       | 07.0      | ,0°      |          | 1.0    | 1.2     |
| LUC            |       | Mo alli   | 0        |          |        |         |
| Day 44         | 2.2   | 0 19 7    | 2.2      | 2.1      | 1.8    | 2.0     |
| Day 57         |       | 33,50,    | -        |          | 1.1    | 0.81    |
| PLT            |       | The Co    |          |          |        |         |
| Day 44         | - ~?  | ) ;;(O) - | -        | -        | -      | 0.82    |
| Day 57         | 4     | (O)       | -        |          | _      | 1.1     |

Changes are expressed as X Fold from mean Group 1 (control) value.

Bolded values were statistically significant.

Shaded boxes indicate no collection at this timepoint for corresponding groups.

Mild to moderate increases in WBC counts (up to 1..8X controls for both genders) were noted in males given  $\geq 27 \text{ ug/dose}$  and females given  $\geq 8.9 \text{ µg/dose}$ , mainly due to minimal to moderate increases in NEUT, LUC (up to 7.2X and 2.2X controls for males and 8.9X and 2.1X controls for females) and/or EOS (up to 3.8X controls for males and up to 6.5X controls for females). Minimal decreases in LYMPH counts were noted for males and females at  $\geq 8.9 \,\mu\text{g/dose}$  (down to 0.74X and 0.73X controls, respectively).

Minimal decreases in PLT were noted in females given 89 µg/dose (0.82X controls).

Of the above changes noted following the dosing period, a full recovery of the findings were noted following the 2-week recovery period.

Any other differences in hematology parameters, including those attaining statistical significance, were judged to be due to individual or biological variation or lacked true dose relationship and therefore were considered not mRNA-1647-related.

<sup>-:</sup> indicates results were considered not to be meaningfully different from mean control value.

#### 9.11. Coagulation

(Table 7 and Appendix 11)

mRNA-1647-related increases in activated partial thromboplastin time (APTT) and in fibrinogen (FIB) were noted in males and females given  $\geq 8.9 \ \mu g/dose$ . The changes are illustrated in Text Table 15.

Text Table 15 Coagulation Changes

| Dose (μg/dose) | 8.9                                                  |         | 27    |         | 89     |         |  |
|----------------|------------------------------------------------------|---------|-------|---------|--------|---------|--|
| Parameter      | Males                                                | Females | Males | Females | Males  | Females |  |
| APTT           |                                                      |         |       |         |        |         |  |
| Day 44         | 1.1                                                  | 1.2     | 1.1   | 1.2     | 1,2    | 1.2     |  |
| Day 57         |                                                      |         |       |         | 0.99   | 0.96    |  |
| FIB            | Emiros virtos en |         |       |         | (0,00) |         |  |
| Day 44         | 1.7                                                  | 1.7     | 1.9   | 1.9     | 2.1    | 2.1     |  |
| Day 57         |                                                      |         |       |         | 0.95   | 1.1     |  |

Changes are expressed as X Fold from mean (Group 1) control value.

Bolded values were statistically significant.

Shaded boxes indicate no collection at this timepoint for corresponding groups.

Minimal increases in APTT were noted for males and females given  $\geq 8.9 \,\mu\text{g}/\text{dose}$  (up to 1.2X controls for both genders). Mild increases in FIB were noted for males and females given  $\geq 8.9 \,\mu\text{g}/\text{dose}$  (up to 2.1X controls for both genders). At the end of the 2-week recovery period, changes were fully recovered.

Any other differences in the coagulation parameters were judged to be due to individual or biological variability or lacked true dose relationship and therefore were considered not mRNA-1647-related.

#### 9.12. Clinical Chemistry

(Table 8 and Appendix 12)

mRNA-1647-related decreases in albumin (ALB) and increases in globulin (GLOB) were noted for males and females; these changes were reflected by overall decrease in A/G ratio. The changes are illustrated in Text Table 16.

Text Table 16 Clinical Chemistry Changes

| Dose (µg/dose) Parameter | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 27    |         | 89    |         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|-------|---------|
|                          | Males                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Females | Males | Females | Males | Females |
| ALB O                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |         |       |         |
| Day 44                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9     | 0.9   | 0.9     | 0.9   | 0.9     |
| Day 57                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |         | 1.0   | 0.9     |
| GLOB                     | Particular Control of |         |       |         |       | •       |
| Day 44                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2     | 1.2   | 1.2     | 1.3   | 1.2     |
| Day 57                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |         | 0.9   | 1.0     |
| A/G                      | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |         |       |         |
| Day 44                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8     | 0.8   | 0.8     | 0.7   | 0.7     |
| Day 57                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |         | 1.1   | 0.9     |

Changes are expressed as X Fold from mean Group 1 (control) value.

Bolded values were statistically significant.

Shaded boxes indicate no collection at this timepoint for corresponding groups.

Minimal decreases in ALB and minimal increases in GLOB were noted for males and females given  $\geq 8.9 \,\mu\text{g/dose}$  (0.9X controls and up to 1.3X controls respectively) and affected the A/G ratio (down to 0.7X controls, for both genders). At the end of the 2-week recovery period, changes were fully recovered.

ansions of Variations thereof Any other differences in the clinical chemistry parameters, including those attaining statistical significance, were judged to be due to individual or biological variability or lacked true dose relationship and therefore were considered not mRNA-1647-related.

### 9.13. Alpha-1-Acid Glycoprotein

(Table 9, Appendix 13 and Appendix 18)

When compared to controls, statistically-significant dose-related increases in Alpha-1-Glycoprotein were noted in males and females, following the dosing period.

Following the 2-week recovery period, the concentrations of Alpha-1-Glycoprotein were comparable in both the controls and the males and females that were previously given 89 µg/dose, suggesting a full recovery.

### 9.14. Alpha-2-Macroglobulin

(Table 9, Appendix 13 and Appendix 18)

When compared to controls, dose-related increases in Alpha-2-Macroglobulin was noted in males and females, following the dosing period.

Following the 2-week recovery period, the concentrations of Alpha-2-Macroglobulin were still slightly higher than controls, suggesting only a partial recovery.

## 9.15. Cytokines

(Table 10, Appendix 14 and Appendix 18)

When compared to controls, statistically-significant higher concentrations of IP-10 were observed in both genders given 89 µg/dose at all timepoints, except on Day 57 (end of recovery) where the IP-10 concentrations were comparable to control levels. The highest IP-10 concentrations were generally observed 6 hours post Day 1 dose.

Higher concentrations of MCP-1 were noted in Test Item-given females on Days 1, 15 and 29, 6 hours postdose; the increases were statistically significant. MCP-1 concentrations were comparable to control levels on Day 57.

No mRNA-1647-related changes were observed in IL-1β, IL-6, MIP-1α and TNF-α levels.

## 9.16. Anti-Therapeutic Antibody (ATA)

(Appendix 16)

The Day 43 samples from mRNA-1647-treated Main Study animals had detectable antibody responses against CMV gB protein and CMV gH pentamer complex. The Day 57 samples from Recovery Study animals previously given 89 µg/dose had similar antibody titers compared to Day 43 titers.

#### 9.17. PBMC

(Appendix 17)

T-cell responses were evaluated by assessment of Interferon gamma (INF $\gamma$ ) producing T cells. The results are detailed in the following tables.

|         |       |               |    | Dose level | Pentamer specific CD4+ T Cells |           |      | Pentamer specific CD8+ T Cells |           |      |  |
|---------|-------|---------------|----|------------|--------------------------------|-----------|------|--------------------------------|-----------|------|--|
|         | Group | Test material | N  | (μg)       | Range (%)*;                    | Mean (%); | SD   | Range (%)*;                    | Mean (%); | SD   |  |
|         | 1     | Reference     | 9  | 0          | 0.00-0.46;                     | 0.03;     | 0.30 | 0.00-0.32;                     | 0.01;     | 0.23 |  |
| les     | 2     | mRNA-1647     | 10 | 8.9        | 0.00-1.20;                     | 0.04;     | 0.52 | 0.00-2.73;                     | 0.43;     | 0.88 |  |
| Males   | 3     | mRNA-1647     | 10 | 27         | 0.00-0.46;                     | 0.08;     | 0.25 | 0.00-0.74;                     | 0.21;     | 0.33 |  |
|         | 4     | mRNA-1647     | 10 | 89         | 0.00-6.99;                     | 0.90;     | 2.19 | 0.00-8.96;                     | 1.29;     | 2.83 |  |
|         | 1     | Reference     | 10 | 0          | 0.00-1.13;                     | 0.02;     | 0.70 | 0.00-0.33;                     | 0.01;     | 0.24 |  |
| ales    | 2     | mRNA-1647     | 10 | 8.9        | 0.00-1.39;                     | 0.09;     | 0.78 | 0.00-3.91;                     | 1.10;     | 1.61 |  |
| Females | 3     | mRNA-1647     | 10 | 27         | 0.00-2.16;                     | 0.34;     | 1.01 | 0.00-2.70;                     | 0.69;     | 1.30 |  |
|         | 4     | mRNA-1647     | 10 | 89         | 0.00-3.16;                     | 0.31;     | 1.42 | 0.00-4.35;                     | 0.95;     | 1.56 |  |

## Summary of Glycoprotein B Specific INF y Response

|         |       |               |     | Dose level    |             | otein specific<br>+ T Cells |      |             | Glycoprotein specific<br>CD8+ T Cells |      |  |
|---------|-------|---------------|-----|---------------|-------------|-----------------------------|------|-------------|---------------------------------------|------|--|
|         | Group | Test material | N   | (μ <b>g</b> ) | Range (%)*; | Mean (%);                   | SD   | Range (%)*; | Mean (%);                             | SD   |  |
|         | 1     | Reference     | 9   | 0             | 0.00-0.57;  | 0.00;                       | 0.31 | 0.00-0.12;  | 0.00;                                 | 0.17 |  |
| les     | 2     | mRNA-1647     | 10  | 8.9           | 0.00-0.79;  | 0.00;                       | 0.38 | 0.00-0.26;  | 0.00;                                 | 0.13 |  |
| Males   | 3     | mRNA-1647     | 10  | 27            | 0.00-0.91;  | 0.15;                       | 0.35 | 0.00-0.64;  | 0.13;                                 | 0.28 |  |
|         | 4     | mRNA-1647     | 10  | 89            | 0.00-3.17;  | 0.53;                       | 0.99 | 0.00-4.52;  | 0.46;                                 | 1.46 |  |
|         | 1     | Reference     | 10  | 0             | 0.00-0.79;  | 0.04;                       | 0.41 | 0.00-0.69;  | 0.13;                                 | 0.36 |  |
| ales    | 2     | mRNA-1647     | 10  | 8.9           | 0.00-1.30;  | 0.03;                       | 0.92 | 0.00-0.00;  | 0.00;                                 | 0.37 |  |
| Females | 3     | mRNA-1647     | 10  | ₹27           | 0.00-2.15;  | 0.08;                       | 1.28 | 0.00-4.17;  | 0.71;                                 | 1.62 |  |
|         | 4     | mRNA-1647     | 210 | 89            | 0.00-3.00;  | 0.00;                       | 1.62 | 0.00-4.76;  | 0.79;                                 | 1.96 |  |

<sup>\*</sup> For purpose of Range and Mean calculation, value <0.00 following unstimulated Control subtration were set to 0.00 for reporting

Maximal antigen-specific response was observed at 89  $\mu$ g/dose for both Pentamer and Glycoprotein B peptide libraries. The Pentamer library produced the stronger response of the two antigen libraries with an individual maximal response in males of up to 6.99 and 8.96% in CD4+ and CD8+ T cells, respectively. The largest response to Glycoprotein B stimulation was at 89  $\mu$ g/dose in males for CD4+ T cells at 3.17%, and in females at 4.76% for CD8+ T cells.

## 9.18. Gross Pathology

(Appendix 19)

#### 9.18.1. Terminal Necropsy (Day 44)

mRNA-1647-related gross pathology findings are summarized in Text Table 17.

Text Table 17
Summary of Gross Pathology Findings – Terminal Necropsy (Day 44)

|                                      |    | M   | lales      |    | Females |           |           |      |  |
|--------------------------------------|----|-----|------------|----|---------|-----------|-----------|------|--|
| Group                                | 1  | 2   | 3          | 4  | 1       | 2         | 3         | 4    |  |
| Dose (μg/dose)                       | 0  | 8.9 | <b>2</b> 7 | 89 | 0       | 8.9       | <b>27</b> | 89   |  |
| No. Animals Examined                 | 10 | 10  | 10         | 10 | 10      | 10        | 10        | 10   |  |
| Site, Injection<br>(No. Examined)    | 10 | 10  | 10         | 10 | 10      | 10        | 10        | 10   |  |
| Abnormal consistency, firm           | 0  | 1   | 5          | 9  | 0       | 3         | 5         | 10.7 |  |
| Swelling                             | 0  | 5   | 6          | 9  | 0       | 5         | 5         | 7    |  |
| Focus, dark                          | 0  | 0   | 0          | 0  | 0       | 1         | 1,0       | 3    |  |
| Lymph Node, Inguinal (No. Examined)  | 10 | 10  | 10         | 10 | 10      | 10        | S 10      | 10   |  |
| Enlargement                          | 1  | 1   | 0          | 5  | 0       | 0 0       | 0,        | 1    |  |
| Lymph Node, Popliteal (No. Examined) | 10 | 10  | 10         | 10 | 10      | 100       | 210       | 10   |  |
| Enlargement                          | 0  | 3   | 7          | 7  | 0       | 7 8 8 OC) | 6         | 7    |  |

At the intramuscular injection sites, dose-dependent mRNA-1647-related gross pathology observations of abnormal firm consistency, dark focus, and/or swelling were noted in animals given  $\geq 8.9~\mu g/dose$ . These gross observations correlated microscopically with mixed cell inflammation of the subcutaneous and/or muscular tissue and/or subcutaneous edema at the injection site.

In the draining inguinal and/or popliteal lymph nodes, mRNA-1647-related gross enlargement was noted in animals given  $\geq 8.9~\mu g/dose$ , and correlated microscopically to mixed cell inflammation. Gross enlargement and microscopic mixed cell inflammation most commonly involved the popliteal lymph nodes. Gross enlargement of the inguinal lymph node was noted in one male given the Reference Item, without any correlating microscopic finding.

Other gross pathology findings observed were considered incidental, of the nature commonly observed in this strain and age of rats, and/or were of similar incidence in Reference and Test Item-treated animals and, therefore, were considered not mRNA-1647-related.

## 9.18.2. Recovery Necropsy (Day 57)

(Appendix 19)

There were no mRNA-1647-related gross pathology findings observed at the end of the 2-week recovery period.

All gross pathology findings observed were considered incidental, of the nature commonly observed in this strain and age of rats, and/or were of similar incidence in Reference and Test Item-treated animals and, therefore, were considered not mRNA-1647-related.

### 9.19. Organ Weights

(Appendix 19)

### 9.19.1. Terminal Necropsy (Day 44)

(Appendix 19)

mRNA-1647-related organ weight changes are summarized in Text Table 18.

Text Table 18
Summary of Organ Weight Data – Terminal Necropsy (Day 44)

|                       |           | Males     |                       | Females  |            |                     |  |
|-----------------------|-----------|-----------|-----------------------|----------|------------|---------------------|--|
| Group                 | 2         | 3         | 4                     | 2        |            | 4                   |  |
| Dose (μg/dose)        | 8.9       | 27        | 89                    | 8.9      | +27        | 89                  |  |
| No. Animals per Group | 10        | 10        | 10                    | 10       | 7 10       | 10                  |  |
| Spleen (No. Weighed)  | 10        | 10        | 10                    | 10       | 10         | 10                  |  |
| Absolute weight       | 1.0794    | 1.0824    | 1.2070 b              | 0.7125   | 0.7566 a   | 0.7934 <sup>b</sup> |  |
| % of body weight      | 0.21190 a | 0.21678 a | 0.23429 °             | 0.22732  | 0.24041 b  | 0.25394 °           |  |
| % of brain weight     | 48.79592  | 49.81185  | 55.10209 <sup>в</sup> | 34.70430 | 36.98272 a | 38.80259 b          |  |

- <sup>a</sup> Significantly different from Group 1 value p≤0.05 (Dunnett).
- <sup>b</sup> Significantly different from Group 1 value p≤0.01 (Dunnett).
- Significantly different from Group 1 value p≤0.001 (Dunnett).

  Based upon statistical analysis of group means, values highlighted in bold are significantly different from control group P ≤ 0.05; refer to data tables for actual significance levels and tests used.

In the spleen, slight dose-dependent increases in absolute and/or relative organ weights were noted in males and females given  $\geq 8.9~\mu g/dose$ . These changes were consistently statistically significant for increases in absolute and/or relative (to body and/or to brain) weights in males given  $89~\mu g/dose$  and females given  $\geq 27~\mu g/dose$ . These splenic weight changes were not correlated with any specific histopathology finding.

No other mRNA-1647-related organ weight changes were noted. There were other isolated organ weight values that were statistically different from their respective controls. There were, however, no patterns, trends, or correlating data to suggest these values were toxicologically relevant. Thus, other organ weight differences observed were considered incidental and/or related to difference of sexual maturity and not mRNA-1647-related.

# 9.19.2. Recovery Necropsy (Day 57)

(Appendix 19)

mRNA-1647-related increased spleen weights noted at the terminal necropsy were also observed at the end of the 2-week recovery period and are summarized in Text Table 19.

|                       |     | Males |           |     | Females |          |  |  |
|-----------------------|-----|-------|-----------|-----|---------|----------|--|--|
| Group                 | 2   | 3     | 4         | 2   | 3       | 4        |  |  |
| Dose (μg/dose)        | 8.9 | 27    | 89        | 8.9 | 27      | 89       |  |  |
| No. Animals per Group | 0   | 0     | 5         | 0   | 0       | 5        |  |  |
| Spleen (No. Weighed)  | 0   | 0     | 5         | 0   | 0       | 5 ::(    |  |  |
| Absolute value        | -   | _     | 1.1022    | -   | -       | 0.6522   |  |  |
| % Difference          | -   | _     | +18.90    | -   | -       | +9.65    |  |  |
| % of body weight      | -   | _     | 0.18856 a | -   | -       | 0.20057  |  |  |
| % Difference          | -   | _     | +21.50    | -   | -       | +11.74   |  |  |
| % of brain weight     | _   | _     | 48.35552  | -   | 00      | 31.90101 |  |  |
| % Difference          |     |       | +10.86    |     | CIC     | ±11 50   |  |  |

Text Table 19
Summary of Organ Weight Data – Recovery Necropsy (Day 57)

Based upon statistical analysis of group means, values highlighted in bold are significantly different from Group  $1-P \le 0.05$ ; refer to data tables for actual significance levels and tests used.

In the spleen, a slight increase in absolute and/or relative organ weights were noted in males and females given 89  $\mu$ g/dose. These changes were not statistically significant, with the exception of mean spleen weight relative to final body weight in the males; and thus, were considered to have limited toxicological importance. These splenic weight changes were not correlated with any specific histopathology finding.

No other mRNA-1647-related organ weight changes were noted. There were other isolated organ weight values that were statistically different from their respective controls. There were, however, no patterns, trends, or correlating data to suggest these values were toxicologically relevant. Thus, other organ weight differences observed were considered incidental and/or related to difference of sexual maturity and not mRNA-1647-related.

#### 9.20. Histopathology

(Appendix 19)

## 9.20.1. Terminal Necropsy (Day 44)

(Appendix 19)

mRNA-1647-related microscopic pathology findings were noted at the injection sites, the draining lymph nodes (popliteal and/or inguinal), sciatic nerve, bone marrow, and spleen and these findings are summarized in Text Table 20

<sup>&</sup>lt;sup>a</sup> Significantly different from Group 1 value p≤0.05 (T-Test).

Text Table 20
Summary of Microscopic Findings – Terminal Necropsy (Day 44)

|                                                                                            |            | M       | ales     |         |            | Fem    | a Los  |        |
|--------------------------------------------------------------------------------------------|------------|---------|----------|---------|------------|--------|--------|--------|
| C                                                                                          | 1          | 2       |          | 4       | 1          | 2 rem  |        | 4      |
| Group                                                                                      | 1          |         | 3        | -       | 1          | _      | 3      |        |
| Dose (μg/dose)                                                                             | 0          | 8.9     | 27       | 89      | 0          | 8.9    | 27     | 89     |
| No. Animals Examined                                                                       | 10         | 10      | 10       | 10      | 10         | 10     | 10     | 10     |
| Site, Injection (No. Examined)                                                             | 10         | 10      | 10       | 10      | 10         | 10     | 10     | 10     |
| Inflammation: mixed cell; subcutaneous                                                     | 0          | 10      | 9        | 10      | 0          | 10     | 10     | 10     |
| Minimal                                                                                    | -          | 1       | 0        | 0       | 0          | 1      | 1      | N. P.  |
| Mild                                                                                       | -          | 6       | 3        | 4       | 0          | 7      | 8      | 3° 2   |
| Moderate                                                                                   | -          | 3       | 6        | 6       | 0          | 2      | 10     | 7      |
| Edema; subcutaneous                                                                        | 0          | 5       | 8        | 9       | 0          | 6      | 8      | 10     |
| Minimal                                                                                    | -          | 2       | 0        | 2       | -          | 2      | 0.5    | 0      |
| Mild                                                                                       | -          | 3       | 2        | 3       | -          | 3      | 4      | 3      |
| Moderate                                                                                   | -          | 0       | 6        | 4       | -          | 4      | 2      | 7      |
| Degeneration; myofiber                                                                     | 5          | 7       | 9        | 6       | 5 \        | 500    | 8      | 6      |
| Minimal                                                                                    | 5          | 7       | 8        | 5       | 4          | 4.     | 6      | 6      |
| Mild                                                                                       | 0          | 0       | 1        | 1       | <i>à 6</i> | (P) 1  | 2      | 0      |
| Lymph Node, Popliteal (No. Examined)                                                       | 10         | 10      | 10       | 10      | 0100       | 10     | 10     | 10     |
| Inflammation; mixed cell                                                                   | 0          | 2       | 10       | 9 8     |            | 10     | 10     | 10     |
| Minimal                                                                                    | _          | 0       | 2        | A.      | 5          | 4      | 2      | 0      |
| Mild                                                                                       | _          | 2       |          | (C3 / C | _          | 6      | 7      | 5      |
| Moderate                                                                                   | _          | 0       | 4.0      | 9,01    | _          | 0      | 1      | 5      |
| Marked                                                                                     | _          | 0 0     | 4 4 0    | \ 1     | _          | 0      | 0      | 0      |
| Lymph Node, Inguinal (No. Examined)                                                        | 10         | 10      |          | 10      | 10         | 10     | 10     | 10     |
| Inflammation; mixed cell                                                                   | 0          | 200.6   | 300      | 3       | 0          | 0      | 0      | 0      |
| Minimal                                                                                    | -0         | 11 2/13 | 0/1      | 1       | _          | _      | _      | _      |
| Mild                                                                                       | <i>₽</i> . | 11/2 V  | 0        | 2       | _          | _      | _      | _      |
| Sciatic Nerve (No. Examined)                                                               | 10         | 100     | 10       | 10      | 10         | 10     | 10     | 10     |
| To Manage at a manage at a second and the second                                           | ( A)       | 10      | 10       | 10      | 0          | 10     | 10     | 10     |
| Minimal                                                                                    | /////s     | 0       | 2        | 1       | _          | 4      | 3      | 1      |
| Mild                                                                                       |            | 2       | 4        | 1       | _          | 2      | 4      | 1      |
| Moderate                                                                                   | (O)        | 3       | 4        | 8       | _          | 4      | 3      | 7      |
| Minimal Mild Moderate Marked  Bone Marrow (No. Examined)  Increased homotopoiosis; mysloid | _          | 5       | Ö        | ő       | _          | ò      | 0      | 1      |
| Bone Marrow (No. Examined)                                                                 | 10         | 10      | 10       | 10      | 10         | 10     | 10     | 10     |
| Increased hematopoiesis; myeloid                                                           | 0          | 0       | 4        | 9       | 0          | 0      | 2      | 9      |
| Minimal Minimal                                                                            | -          | -       | 4        | 9       | _          | -      | 2      | 9      |
| Spleen (No. Examined)                                                                      | 10         | 10      | 10       | 10      | 10         | 10     | 10     | 10     |
|                                                                                            | 10         | 10      | 10       |         | 10         | 10     |        |        |
| Decreased cellularity; periarteriolar                                                      | 0          | 5       | 9        | 10      | 0          | 7      | 10     | 10     |
| lymphoid sheath                                                                            |            | 1       | <b>5</b> | 2       |            | _      | 6      | 1      |
| Minimal No.                                                                                | -          | 1       | 5<br>4   | 3<br>7  | -          | 5<br>2 | 6<br>4 | 1<br>9 |
| Mild &                                                                                     | -          | 4       | 4        | 1       | -          |        | 4      | 9      |

Localized tissue reactions involved the intramuscular injection sites, the draining popliteal and/or inguinal lymph nodes, and the sciatic nerves. Systemic tissue reactions involved the bone marrow and spleen.

At the intramuscular injection sites, there was a dose-related inflammatory reaction characterized by minimal to moderate mixed cell inflammation involving the subcutaneous tissues, skeletal muscle, and to a lesser extent the dermis, as well as associated minimal to moderate subcutaneous edema and minimal to mild myofiber degeneration in animals given  $\geq 8.9 \,\mu\text{g/dose}$ . The inflammatory reaction, which increased in severity with increasing dose, often extended along and expanded endomysial and perimysial tissue layers, encircling individual muscle fibers

and/or bundles. This reaction was characterized by varying numbers of intact and degenerating neutrophils, mononuclear cells, and macrophages (mixed cell inflammation); accumulations of protein-rich fluid (edema); and varying degrees of myofiber degeneration.

In the draining popliteal and/or inguinal lymph nodes, an increased incidence and/or severity of minimal to marked mixed cell inflammation were noted in animals given  $\geq 8.9 \,\mu\text{g}/\text{dose}$ . The inflammation often involved the adventitia surrounding the lymph nodes, and most commonly involved the popliteal lymph nodes.

Minimal to marked mixed cell inflammation was frequently observed in the perineurial tissue surrounding the sciatic nerve of animals given  $\geq 8.9 \,\mu\text{g/dose}$ . This finding was considered to be an extension of the inflammatory reaction at the intramuscular injection sites to this region.

In the bone marrow, minimal increased myeloid hematopoiesis was noted in animals given  $\geq$  27 µg/dose. This finding was characterized by increased numbers of myeloid precursors in the marrow, and was secondary or compensatory inflammatory reaction noted at the intramuscular injection sites.

In the spleen, a dose-dependent minimal to mild decreased cellularity of the periarteriolar lymphoid sheath was noted in animals given  $\geq 8.9 \,\mu\text{g/dose}$ .

Other microscopic findings observed were considered incidental, of the nature commonly observed in this strain and age of rats, and/or were of similar incidence and severity in Reference and Test Item-treated animals and, therefore, were considered not mRNA-1647-related.

## 9.20.2. Recovery Necropsy (Day 57)

(Appendix 19)

Following the 2-week recovery period, microscopic pathology findings seen at the terminal necropsy were no longer present in the draining lymph nodes (popliteal and/or inguinal), consistent with a complete recovery of these findings.

Microscopic findings noted at the terminal necropsy were also observed at the recovery necropsy at the injection sites (however, a shift to mononuclear cell infiltration rather than mixed cell inflammation was observed), sciatic nerve, bone marrow, and spleen and these findings are summarized in Text Table 21.

Text Table 21
Summary of Microscopic Findings – Recovery Necropsy (Day 57)

|                                                | N | Iales | Fe             | emales             |
|------------------------------------------------|---|-------|----------------|--------------------|
| Group                                          | 1 | 4     | 1              | 4                  |
| Dose (μg/dose)                                 | 0 | 89    | 0              | 89                 |
| No. Animals Examined                           | 4 | 5     | 4              | 5                  |
| Site, Injection (No. Examined)                 | 4 | 5     | 5              | 5                  |
| Infiltration, mononuclear cell; myofiber       | 0 | 2     | 0              | 5 ili <sup>0</sup> |
| Minimal                                        | - | 1     | -              | 4                  |
| Mild                                           | - | 1     | -              | 11,0               |
| Nerve, Sciatic                                 | 4 | 5     | 5              | 05                 |
| Inflammation, mixed cell; perineurial          | 0 | 0     | 0              | × 2                |
| Minimal                                        | - | -     | <del>-</del> ; | 2                  |
| Bone Marrow (No. Examined)                     | 4 | 5     | 5              | 5                  |
| Increased hematopoiesis; myeloid               | 0 | 2     | 0+             | 1                  |
| Minimal                                        | - | 2     | 7-0,00         | 1                  |
| Spleen (No. Examined)                          | 4 | 5     | 50             | 5                  |
| Decreased cellularity; periarteriolar lymphoid | 0 | 2     | )              | 0                  |
| sheath                                         | U | 2     | * OLIV         | U                  |
| Minimal                                        | - | 200   | R -            | -                  |

At the intramuscular injection sites, there was a residual inflammatory reaction characterized by minimal to mild mononuclear cell infiltration involving the subcutaneous tissues and skeletal muscle at  $89 \mu g/dose$ . Minimal to mild myofiber degeneration did not differ in incidence or severity from the Reference Item-treated group

Mixed cell inflammation involving the draining lymph nodes (popliteal and/or inguinal) and sciatic nerves, as noted as the terminal euthanasia, was not noted at the recovery necropsy, consistent with complete recovery.

Minimal mixed cell inflammation was observed in the perineurial tissue surrounding the sciatic nerve of females given 89  $\mu$ g/dose. The incidence and severity of this finding was reduced compared to the terminal necropsy.

In the bone marrow, minimal increased myeloid hematopoiesis was noted in animals given 89 µg/dose. The incidence of this finding was reduced compared to the terminal necropsy.

In the spleen, a minimal decreased cellularity of the periarteriolar lymphoid sheath was noted in males given 89 µg/dose. The incidence and severity of this finding was reduced compared to the terminal necropsy.

Other microscopic findings observed were considered incidental, of the nature commonly observed in this strain and age of rats, and/or were of similar incidence and severity in Reference and Test Item-treated animals and, therefore, were considered not mRNA-1647-related.

#### 10. CONCLUSION

In conclusion, administration of mRNA-1647 by intramuscular injection for 6 weeks (4 doses) parameters) in rats up to 89 μg/dose. Starting at 8.9 μg/dose, generally dose-dependent changes in clinical signs at the injection site, clinical pathology parameters, cytokines and acute protein levels were consistent with an inflammatory response at the injection site. Dose-related to organ effects were limited to the injection site, the bone many lymph nodes, the connection. spleen of were partially, were partially, and the property of the partial partial and the partial part mRNA-1647. At the end of the 2-week recovery period, all changes were partially or fully

Figure 1

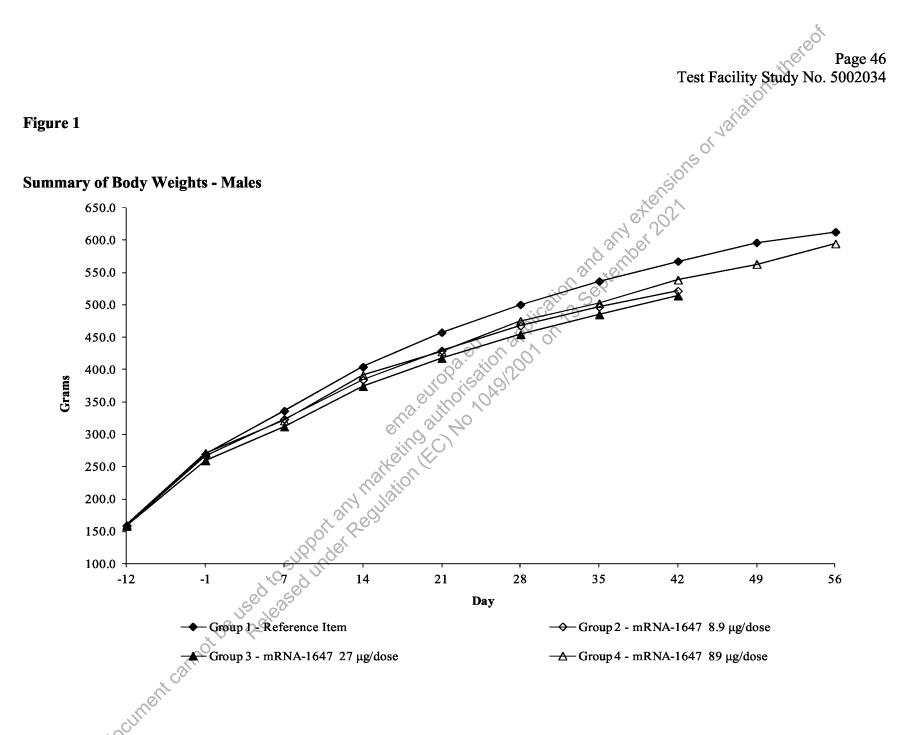



Figure 2

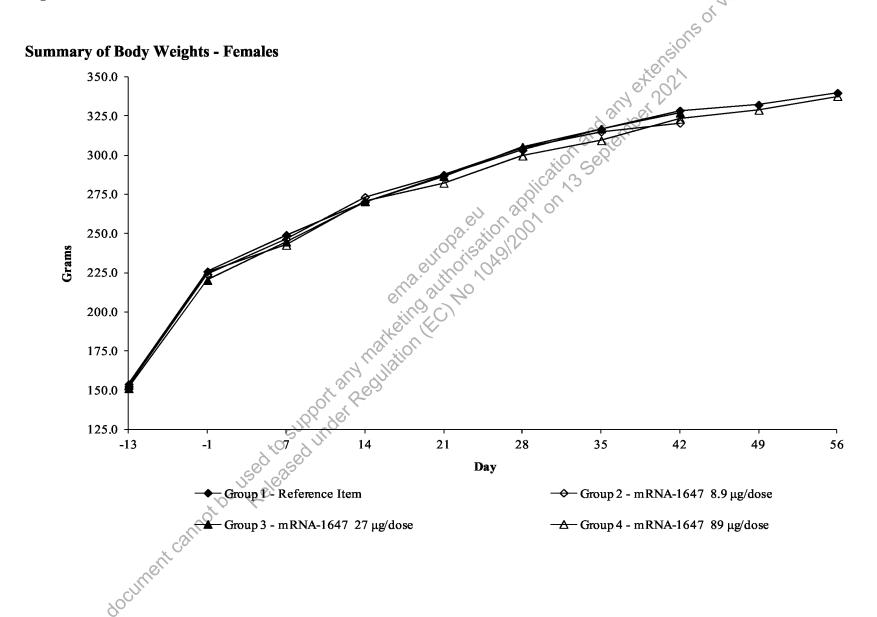



Table 1

|                           |                      |                 |          | <u> </u> |
|---------------------------|----------------------|-----------------|----------|----------|
|                           | Day numbers relative | e to Start Date | 5/5/8    | -        |
|                           |                      |                 | te.      |          |
|                           | 0                    | 8.9             | 27, 0,00 | 89       |
|                           | ug/dose              | ug/dose         | ug/dose  | ug/dose  |
| Swollen Soft              |                      |                 | id allo  |          |
| Number of Observat        | ions .               | 10              |          | 13       |
| Number of Animals         | •                    | 10              | 10       | 12       |
| Days from - to            | •                    | 44 44           | 28 44    | 31 45    |
| Swollen Firm              |                      | Jilos V.        | 5        |          |
| Number of Observat        | ions .               | 20 40           | •        | 4        |
| Number of Animals         | •                    | 7) SK O.        | •        | 3        |
| Days from - to            | 2                    | 100 101         | •        | 31 44    |
| Skin, Red                 | , o?.                | E311 1/20       |          |          |
| Number of Observat        | ions 2               | 7               | 1        | 7        |
| Number of Animals         | 2 2                  | 2               | 1        | 6        |
| Days from - to            | 70 44                | 14 44           | 14 14    | 31 45    |
| Skin, Lesion w/ Discharge | 0.000                |                 |          |          |
| Number of Observat        | ions                 | 1               |          |          |
| Number of Animals         | To Ch                | 1               | •        | •        |
| Days from - to            | ions                 | -1 -1           | •        |          |
| Skin, Scab                | All ilati            |                 |          |          |
| Number of Observat        | ions 3               | 11              | 1        | 4        |
| Number of Animals         | 3                    | 4               | 1        | 2        |
| Days from - to            | 7 44                 | -1 44           | 14 14    | 28 35    |
| Fur, Erected              | 76                   |                 |          |          |
| Number of Observat        | ions .               | 2               | 2        | 1        |
| Number of Animals         |                      | 2               | 2        | 1        |
| Days from to              | •                    | 44 44           | 44 44    | 44 44    |
| Fur, Staining Red         |                      |                 |          |          |
| Number of Observat        | ions .               | 5               |          | 9        |
| Number of Animals         | •                    | 2               | •        | 3        |
| Days from - to            | •                    | 28 44           |          | 14 57    |
| COL                       |                      |                 |          |          |

Table 1

|           |                                                                                  | Day numbers relativ | ve to Start Date | ans)            | <u>)</u>        |
|-----------|----------------------------------------------------------------------------------|---------------------|------------------|-----------------|-----------------|
| Sex: Male |                                                                                  | 0<br>ug/dose        | 8.9<br>ug/dose   | 27<br>ug/dose   | 89<br>ug/dose   |
|           | Fur, Thin Cover<br>Number of Observations<br>Number of Animals<br>Days from - to | 3<br>1<br>28 42     | 1<br>1<br>44 44  | In September    | 1<br>1<br>44 44 |
|           | Malocclusion Number of Observations Number of Animals Days from - to             | :                   | in solver        | 7<br>1<br>7 44  | :               |
|           | Testis, Enlarged Number of Observations Number of Animals Days from - to         | Sing Ship           | 1<br>1<br>28 28  | :               | :               |
|           | Digit Bent Number of Observations Number of Animals Days from - to               | 28 42  28 42        | :                | 1<br>1<br>44 44 | :               |

Table 1

| Day num                                                                                                                                                                                                                                                                                                                                                                                                                                           | bers relati  | ve to Start Date | ells.         |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|---------------|---------------|
| Hyperreactive Number of Observations Number of Animals Days from - to  Hypersensitive Number of Observations Number of Animals Days from - to  Vocalization Increased Number of Observations Number of Animals Days from - to  Caught in Cage Number of Observations Number of Animals Days from - to  Swollen Soft Number of Observations Number of Animals Days from - to  Swollen Firm Number of Observations Number of Animals Days from - to | 0<br>ug/dose | 8.9<br>ug/dose   | 27<br>ug/dose | 89<br>ug/dose |
| Hyperreactive                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  | 10 NO         |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | 3                | D' *81.       | •             |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | •            | 1                | 7 00          | •             |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | 35 44            | 50.           | •             |
| Hypersensitive                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | JICO V           | 3             |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 260              | •             | 8             |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | 11 84 0,         |               | 1             |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 0          | 1.0° 10''        | •             | 7 44          |
| Vocalization Increased                                                                                                                                                                                                                                                                                                                                                                                                                            | ,09°         | Call 1/20        |               |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            | م الله       | (13 /02),        | ·             | 8             |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,700        | , VO.            |               | 1             |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ma Shi       | 0                | •             | 7 44          |
| Caught in Cage                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00         | -                |               |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            | SIII SO,     | •                | 1             | •             |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 (0         |                  | 1             | •             |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | .101         | •                | 28 28         | •             |
| Swollen Soft                                                                                                                                                                                                                                                                                                                                                                                                                                      | gi.          |                  |               |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 10               | 11            | 14            |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | •            | 10               | 10            | 13            |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | 44 44            | 7 44          | 31 45         |
| Swollen Firm                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                  |               |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            |              | •                | •             | 10            |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | •            | •                | •             | 10            |
| Days from 5 to                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | •                | •             | 31 31         |
| Warm to Touch                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |               |               |
| Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                            | •            |                  | •             | 2             |
| Number of Animals                                                                                                                                                                                                                                                                                                                                                                                                                                 | •            | •                | •             | 2             |
| Days from - to                                                                                                                                                                                                                                                                                                                                                                                                                                    | •            | •                | •             | 44 44         |
| r Co                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |               |               |

Table 1

#### 5002034

Day numbers relative to Start Date Sex: Female 0 8.9 89 ug/dose ug/dose ug/dose ug/dose Skin, Red 35 Number of Observations 2 15 Number of Animals 17 56 Days from - to Skin, Dry Number of Observations Number of Animals 21 57 Days from - to Skin, Lesion Number of Observations Number of Animals Days from - to Skin, Lesion w/ Discharge Number of Observations Number of Animals 1 Days from - to 28 28 Skin, Scab Number of Observations ( 14 Number of Animals Days from - to 28 57 Fur, Staining, Red Number of Observations 11 Number of Animals Days from to 35 57 14 44 21 44 21 57 Fur, Thin Cover Number of Observations Number of Animals Days from - to 28 57 57 57 -14 44

-----

| Table 1     |                                                                                                                                              | Summary of Clinic  |                  |                 | 89              |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|-----------------|-----------------|--|
|             |                                                                                                                                              | Day numbers relati | ve to Start Date |                 | ( <u>)</u>      |  |
| Sex: Female |                                                                                                                                              | 0<br>ug/dose       | 8.9<br>ug/dose   | 27<br>ug/dose   | 89<br>ug/dose   |  |
|             | Teeth, Broken  Number of Observations  Number of Animals  Days from - to                                                                     | :<br>:<br>:        | , i              | or September    | 8<br>1<br>-1 44 |  |
|             | Skin Staining<br>Number of Observations<br>Number of Animals<br>Days from - to                                                               | oma europa         | isation applice  | 1<br>1<br>44 44 | :               |  |
|             |                                                                                                                                              | anymanketing EC    |                  |                 |                 |  |
|             | Teeth, Broken Number of Observations Number of Animals Days from - to  Skin Staining Number of Observations Number of Animals Days from - to |                    |                  |                 |                 |  |

Table 2
Summary of Body Weights (g)

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose

| Group | /        |       |       |            | Day    |           | 4.20   | )      |
|-------|----------|-------|-------|------------|--------|-----------|--------|--------|
| Sex   |          | -12   | -1    | 7          | 14     | 21        | 280    | 35     |
| 1M    | Mean     | 159.5 | 269.5 | 336.4      | 404.4  | 457.7     | 500.5  | 536.7  |
| IVI   | SD       | 5.0   | 13.5  | 19.3       | 27.8   | 31.4      | 36.3   | 40.5   |
|       | N        | 15    | 15    | 15         | 15     | 145 OL 73 | 15     | 15     |
| 2M    | Mean     | 158.3 | 266.7 | 323.6      | 384.4  | 429.3a    | 467.9  | 497.0a |
|       | SD       | 5.2   | 12.1  | 17.6       | 23.3   | 30.0      | 42.9   | 48.7   |
|       | N        | 10    | 10    | 10         | 20 0   | 10        | 10     | 10     |
|       | %Diff G1 | -0.7  | -1.0  | -3.8       | -4.9 O | -6.2      | -6.5   | -7.4   |
| M     | Mean     | 158.3 | 259.3 | 312.0b     | 374.1b | 417.6b    | 454.3b | 484.9b |
|       | SD       | 6.1   | 7.6   | 10.7       | Ø 45.1 | 20.2      | 25.3   | 28.9   |
|       | N        | 10    | 10    | 10         | 10     | 10        | 10     | 10     |
|       | %Diff G1 | -0.7  | -3.8  | -7.3 M     | -7.5   | -8.8      | -9.2   | -9.7   |
| łМ    | Mean     | 159.5 | 271.2 | 321.2a     | 391.5  | 428.1a    | 475.3  | 502.3a |
|       | SD       | 4.8   | 14.9  | 16.2<br>15 | 20.1   | 22.6      | 26.0   | 27.2   |
|       | N        | 15    | 15    | 15         | 15     | 15        | 15     | 15     |
|       | %Diff G1 | 0.0   | 0.6.0 | -4.5       | -3.2   | -6.5      | -5.0   | -6.4   |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

Table 2 Summary of Body Weights (g)

| Tabl  | e 2           |                         |       |                                 |
|-------|---------------|-------------------------|-------|---------------------------------|
| Sum   | mary of Bo    | dy Weights              | (g)   |                                 |
| _     | 1 - Reference | e Item<br>647 27 μg/dos | se    |                                 |
| Group |               |                         | Day   |                                 |
| Sex   | ,             | 42                      | 49    | 56 612.8 45.5 4 594.6 25.9 -3.0 |
| 13.6  | Mean          | 567.5                   | 596.3 | 612.9                           |
| 1M    | SD            | 46.3                    | 44.3  | 45.5                            |
|       | N             | 15                      | 4     | 4                               |
| 2M    | Mean          | 521.8a                  |       |                                 |
|       | SD            | 52.1                    |       |                                 |
|       | N             | 10                      |       |                                 |
|       | %Diff G1      | -8.0                    |       |                                 |
| 3M    | Mean          | 514.1b                  |       |                                 |
|       | SD            | 34.1                    |       |                                 |
|       | N             | 10                      |       | <                               |
|       | %Diff G1      | -9.4                    |       | 4                               |
| 4M    | Mean          | 538.7                   | 563.0 | 594.6                           |
|       | SD            | 29.2                    | 27.1  | 25.9                            |
|       | N             | 15                      | 5     | 50,005                          |
|       | %Diff G1      | -5.1                    | -5.6  | -3.0                            |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

Table 2 Summary of Body Weights (g)

|         |               |               |       |                    |                            |                            |                | Test Facility |
|---------|---------------|---------------|-------|--------------------|----------------------------|----------------------------|----------------|---------------|
| Table   | e <b>2</b>    |               |       |                    |                            |                            |                | Jaijail       |
| Sumi    | nary of Bo    | dy Weights    | s (g) |                    |                            |                            |                | SOF           |
| Group   | 1 - Reference | Item          |       |                    | _                          | 2 - mRNA-1647              | OIS MB GOOD    | SIOT          |
| Group   | 3 - mRNA-10   | 647 27 μg/do: | se    |                    | Group                      | 4 - mRNA-1647              | 89 μg/dose     | 2             |
| Group / | 1             | -13           | -1    | 7                  | Day<br>14                  | 21                         | and any 2881 2 | 35            |
| 1F      | Mean          | 153.9         | 225.9 | 249.1              | 270.4                      | 287.0                      | 303.3          | 316.5         |
|         | SD            | 7.0           | 15.5  | 17.2               | 22.3                       | 22.5                       | 26.9           | 29.3          |
|         | N             | 15            | 15    | 15                 | 15                         | 95                         | 15             | 15            |
| 2F      | Mean          | 152.4         | 223.9 | 246.5              | 273.3                      | 287.4                      | 304.4          | 315.0         |
|         | SD            | 5.1           | 13.6  | 19.6               | 27.0                       | 31.3                       | 33.5           | 35.2          |
|         | N             | 10            | 10    | 10                 | 010                        | 10                         | 10             | 10            |
|         | %Diff G1      | -1.0          | -0.9  | -1.1               | 273.3<br>2730<br>10<br>131 | 287.4<br>31.3<br>10<br>0.1 | 0.4            | -0.5          |
| 3F      | Mean          | 151.2         | 220.2 | 244 =              | 270.4                      | 286.6                      | 305.3          | 316.9         |
|         | SD            | 6.0           | 12.2  | 18.0               | 26.6                       | 25.6                       | 31.2           | 33.1          |
|         | N             | 10            | 10    | 10                 | 10                         | 10                         | 10             | 10            |
|         | %Diff G1      | -1.8          | -2.5  | 18.0<br>10<br>-1.8 | 0.0                        | -0.1                       | 0.7            | 0.1           |
| 4F      | Mean          | 153.1         | 225.1 | 242.7              | 270.6                      | 282.3                      | 299.5          | 309.4         |
|         | SD            | 6.5           | 9.2   | 13.6<br>15         | 18.7                       | 20.9                       | 20.4           | 26.1          |
|         | N             | 15            | 15    | )Y (015            | 15                         | 15                         | 15             | 15            |
|         | %Diff G1      | -0.6          | -0.4  | -2.6               | 0.1                        | -1.6                       | -1.3           | -2.2          |

Table 2 **Summary of Body Weights (g)** 

|              | mary of Bo                  | dy Weights             | 5 <b>(g</b> ) |                                                                  |
|--------------|-----------------------------|------------------------|---------------|------------------------------------------------------------------|
| -            | 1 - Reference<br>3 - mRNA-1 | e Item<br>647 27 μg/do | se            |                                                                  |
| Group<br>Sex |                             | 42                     | Day<br>49     | 339.8<br>31.3<br>5<br><br><br><br><br>337.6<br>33.5<br>5<br>-0.6 |
| 1F           | Mean                        | 328.5                  | 332.2         | 339.8                                                            |
|              | SD                          | 31.4                   | 31.9          | 31.3                                                             |
|              | N                           | 15                     | 5             | 5                                                                |
| 2F           | Mean                        | 320.6                  |               |                                                                  |
|              | SD                          | 36.5                   |               |                                                                  |
|              | N                           | 10                     |               |                                                                  |
|              | %Diff G1                    | -2.4                   |               |                                                                  |
| 3F           | Mean                        | 327.0                  |               |                                                                  |
| J1           | SD                          | 32.7                   |               |                                                                  |
|              | N                           | 10                     |               | 2                                                                |
|              | %Diff G1                    | -0.5                   |               | Mar Kno                                                          |
| 4F           | Mean                        | 323.1                  | 328.8         | 337.6                                                            |
|              | SD                          | 26.1                   | 36.6          | 33.5                                                             |
|              | N                           | 15                     | 5 👊           | 5                                                                |
|              | %Diff G1                    | -1.7                   | -1.0          | -0.6                                                             |

Table 3 Summary of Body Weight Gains (g)

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose

| -121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Change C | n      | /              |                    |                  |                 | Day             |         | W. Kr. |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|--------------------|------------------|-----------------|-----------------|---------|--------|---------|
| -121 -1 -7 7 -14 14 -21 21 -28 28 -35 3  IM Mean 110.0 66.9 68.0 53.3 42.9 36.2 3  SD 11.9 6.7 10.1 7.1 7.5 6.0  N 15 15 15 15 15 15 15 15  2M Mean 108.4 56.9b 60.8 44.9b 38.6 29.1a 2  SD 9.4 8.4 9.5 7.9 13.6 7.0  N 10 10 10 10 10 10 10 10 10 10  3M Mean 101.0 52.7c 62.1 43.5b 36.7 30.6 2  SD 7.4 8.2 5.6 6.7 7.6 4.8  N 10 10 10 10 10 10 10 10 10 11  AM Mean 111.7 50.0c 70.3 36.6c 47.2 26.9c 3  SD 12.7 6.8 7.3 5.0 6.8 5.4  N 15 15 15 15 15  Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean 110.0 66.9 68.0 53.3 42.9 36.2 30.7 SD 11.9 6.7 10.1 7.1 7.5 6.0 6.7 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sex    |                | _                  | Change           | Change          | Change          | Change  | Change | Change  |
| 1M       Mean       110.0       66.9       68.0       53.3       42.9       36.2       3         SD       11.9       6.7       10.1       7.1       7.5       6.0         N       15       15       15       15       15       15         2M       Mean       108.4       56.9b       60.8       44.9b       38.6       29.1a       2         SD       9.4       8.4       9.5       7.9       13.6       7.0       7.0         N       10       10       10       10       10       10       10       10       10         3M       Mean       101.0       52.7c       62.1       43.5b       36.7       30.6       2         SD       7.4       8.2       5.6       6.7       7.6       4.8         N       10       10       10       10       10       10       1         4M       Mean       111.7       50.0c       70.3       36.6c       47.2       26.9c       3         SD       12.7       6.8       7.3       5.0       6.8       5.4         N       15       15       15       15       15 | M Mean 110.0 66.9 68.0 53.3 42.9 36.2 30.7 SD 11.9 6.7 10.1 7.1 7.5 6.0 6.7 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                | -121               | -1 - 7           | 7 - 14          | 14 - 21         | 21 - 28 | 28-35  | 35 - 42 |
| SD 11.9 6.7 10.1 7.1 7.5 6.0 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SD 11.9 6.7 10.1 7.1 7.5 6.0 6.0 6.7 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1M     | Mean           | 110.0              | 66.9             | 68.0            | 53.3            | 42.9    | 36.2   | 30.7    |
| N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | SD             | 11.9               | 6.7              | 10.1            | 7.1             | 7.50    | 6.0    | 6.7     |
| 2M Mean 108.4 56.9b 60.8 44.9b 38.6 29.1a 2 SD 9.4 8.4 9.5 7.9 13.6 7.0 N 10 10 10 10 10 10 10 10  3M Mean 101.0 52.7c 62.1 43.5b 36.7 30.6 2 SD 7.4 8.2 5.6 6.7 7.6 4.8 N 10 10 10 10 10 10 10 10  4M Mean 111.7 50.0c 70.3 36.6c 47.2 26.9c 3 SD 12.7 6.8 7.3 5.0 6.8 5.4 N 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean 108.4 56.9b 60.8 44.9b 38.6 29.1a 24.8 SD 9.4 8.4 9.5 7.9 13.6 7.0 8.0 N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | N              | 15                 | 15               | 15              | 15              | 15      | 15     | 15      |
| SD       9.4       8.4       9.5       7.9       13.6       7.0         N       10       10       10       10       10       1         3M       Mean       101.0       52.7c       62.1       43.5b       36.7       30.6       2         SD       7.4       8.2       5.6       6.7       7.6       4.8         N       10       10       10       10       10       10       10         4M       Mean       111.7       50.0c       70.3       36.6c       47.2       26.9c       3         SD       12.7       6.8       7.3       5.0       6.8       5.4         N       15       15       15       15       15       15         Significantly different from control group 1 value: a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                         | SD 9.4 8.4 9.5 7.9 13.6 7.0 8.0 N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2M     | Mean           | 108.4              | 56.9b            | 60.8            | 44.9b           | 38.6    | 29.1a  | 24.8    |
| N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | SD             | 9.4                | 8.4              | 9.5             | 7.9             | 13.6    | 7.0    | 8.0     |
| 3M Mean 101.0 52.7c 62.1 43.5b 36.7 30.6 2 SD 7.4 8.2 5.6 6.7 7.6 4.8 N 10 10 10 10 10 10 10 10 10  4M Mean 111.7 50.0c 70.3 36.6c 47.2 26.9c 3 SD 12.7 6.8 7.3 5.0 6.8 5.4 N 15 15 15 15 15 15 15 15  Significantly different from control group 1 value a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean 101.0 52.7c 62.1 43.5b 36.7 30.6 29.2 SD 7.4 8.2 5.6 6.7 7.6 4.8 7.4 N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | N              | 10                 | 10               | 10              | 6/10 OT 0       | 10      | 10     | 10      |
| SD 7.4 8.2 5.6 6.7 7.6 4.8 N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD 7.4 8.2 5.6 6.7 7.6 4.8 7.4 N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3M     | Mean           | 101.0              | 52.7c            | 62.1            | 43.5b           | 36.7    | 30.6   | 29.2    |
| N 10 10 10 10 10 10 10 10 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | SD             | 7.4                | 8.2              | 5.6             | (6.7)           | 7.6     | 4.8    | 7.4     |
| 4M Mean 111.7 50.0c 70.3 36.6c 47.2 26.9c 3 SD 12.7 6.8 7.3 5.0 6.8 5.4 N 15 15 15 15 15 15 15 15 15  Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean 111.7 50.0c 70.3 36.6c 47.2 26.9c 36.4 SD 12.7 6.8 7.3 5.0 6.8 5.4 5.9 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | N              | 10                 | 10               | 10              | 10              | 10      | 10     | 10      |
| SD 12.7 6.8 7.3 5.0 6.8 5.4 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SD 12.7 6.8 7.3 5.0 6.8 5.4 5.9 N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4M     | Mean           | 111.7              | 50.0c            | 70.3            | 36.6c           | 47.2    | 26.9c  | 36.4    |
| N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1141   | SD             | 12.7               | 6.8              | 7.3             | 5.0             | 6.8     | 5.4    | 5.9     |
| Significantly different from control group 1 value a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                | 15                 | 15               | 1500            | 15              | 15      | 15     | 15      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , camot by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |                    | (                | 0,01            |                 |         |        |         |
| 5002034 CHRENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Signif | ficantly diffe | erent from control | group 1 value :a | =p≤0.05,b=p≤0.0 | 1,c=p≤0.001 (Du | nnett)  |        |         |

Table 3 Summary of Body Weight Gains (g)

Group 3 - mRNA-1647 27 µg/dose

|       | /           |                                  | D                             | ay                                                    |                  |
|-------|-------------|----------------------------------|-------------------------------|-------------------------------------------------------|------------------|
| Sex   |             | Change                           | Change                        | Change                                                | Change           |
|       |             | -1 - 42                          | 42 - 49                       | 49 - 56                                               | 42 - 56          |
| 1M    | Mean        | 298.0                            | 28.8                          | 16.5                                                  | 45.3             |
|       | SD          | 36.1                             | 6.7                           |                                                       |                  |
|       | N           | 15                               | 4                             | 4                                                     | 4                |
| 2M    | Mean        | 255.1a                           |                               | 4.0<br>4<br><br><br><br>31.6e<br>7.6<br>5<br><br><br> | 0.e <sub>0</sub> |
|       | SD          | 47.3                             |                               |                                                       | .08° c2          |
|       | N           | 10                               |                               |                                                       | elikolis         |
| 3M    | Mean        | 254.8a                           |                               |                                                       | US. 871170       |
|       | SD          | 34.9                             |                               |                                                       | (19 cm)          |
|       | N           | 10                               |                               | - 12                                                  | ili Ki           |
| 4M    | Mean        | 267.5                            | 20.8                          | 31.6e                                                 | 52.4             |
|       | SD          | 23.9                             | 3.6                           | 7.6                                                   | 7.0              |
|       | N           | 15                               | 5                             | 5,000                                                 | 5                |
|       | ncantiv aim |                                  |                               | =からいいつ か=からいい                                         |                  |
| Signi |             | 267.5 23.9 15 erent from control | group 1 value :a=<br>d=p≤0.05 | ,e=p≤0.01,f=p≤0                                       | .001 (T-test)    |

Table 3 Summary of Body Weight Gains (g)

Group 3 - mRNA-1647 27 μg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose

| Group | 1    |        |        |        | Day      |          | 4.20    |         |
|-------|------|--------|--------|--------|----------|----------|---------|---------|
| Sex   |      | Change | Change | Change | Change   | Change   | Change  | Change  |
|       |      | -131   | -1 - 7 | 7 - 14 | 14 - 21  | 21 - 28  | 28 - 35 | 35 - 42 |
| 4.5   | M    | 72.0   | 22.2   | 21.2   | 16.6     | 16.2 : 0 | 13.2    | 10.1    |
| 1F    | Mean | 72.0   | 23.2   | 21.3   | 16.6     | 16.3     |         | 12.1    |
|       | SD   | 14.6   | 6.8    | 8.9    | 7.6      | 7.60     | 6.5     | 6.1     |
|       | N    | 15     | 15     | 15     | 15       | ada, or  | 15      | 15      |
| 2F    | Mean | 71.5   | 22.6   | 26.8   | 14.1     | 2.0      | 10.6    | 5.6b    |
|       | SD   | 11.9   | 8.8    | 8.9    | 7.9      | 8.7      | 5.9     | 5.3     |
|       | N    | 10     | 10     | 10     | @10 of o | × 10     | 10      | 10      |
| 3F    | Mean | 69.0   | 24.5   | 25.7   | 16.2     | 18.7     | 11.6    | 10.1    |
| _     | SD   | 13.9   | 9.1    | 11.3   | 10.4     | 9.0      | 5.9     | 3.9     |
|       | N    | 10     | 10     | 10     | 10       | 10       | 10      | 10      |
| 4F    | Mean | 72.0   | 17.6   | 27.9   | 11.7     | 17.2     | 9.9     | 13.7    |
|       | SD   | 9.5    | 6.9    | 7.7    | 7.9      | 4.1      | 7.8     | 4.0     |
|       | N    | 15     | 15     | 1500   | 15       | 15       | 15      | 15      |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

5002034

Table 3 Summary of Body Weight Gains (g)

|                |                            |                            |                   |                          |                       | Test Facility Study N                                                      |
|----------------|----------------------------|----------------------------|-------------------|--------------------------|-----------------------|----------------------------------------------------------------------------|
| Γable          | e 3                        |                            |                   |                          |                       | Valiation                                                                  |
| Sumi           | nary of B                  | ody Weight G               | ains (g)          |                          |                       | as of                                                                      |
| -              | 1 - Reference<br>3 - mRNA- | ce Item<br>1647 27 µg/dose |                   |                          | Group 2<br>Group 4    | 2 - mRNA-1647 8.9 μg/dose<br>4 - mRNA-1647 89 μg/dose                      |
| Group /<br>Sex | /                          | Change                     | Change<br>42 - 49 | Day<br>Change<br>49 - 56 | Change<br>42 - 56     | Test Facility Study N 2 - mRNA-1647 8.9 μg/dose 4 - mRNA-1647 89 μg/dose - |
| 1F             | Mean                       | 102.6                      | 7.2               | 7.6                      | 14.8                  | "OL 66/6"                                                                  |
|                | SD                         | 20.0                       | 9.7               | 7.5                      | 12.8                  | ::CAN A                                                                    |
|                | N                          | 15                         | 5                 | 5                        | 5                     | applion of                                                                 |
| 2F             | Mean                       | 96.7                       |                   |                          | n                     | 01.00                                                                      |
|                | SD                         | 25.8                       |                   |                          | , <del>0</del> 00,000 |                                                                            |
|                | N                          | 10                         |                   |                          | Sen HOLYO             | X <sup>2</sup>                                                             |
| 3F             | Mean                       | 106.8                      |                   | 65                       | 10 371,70             |                                                                            |
|                | SD                         | 25.4                       |                   | <del></del>              | 10 cm                 |                                                                            |
|                | N                          | 10                         |                   | <sub>(1</sub> )          | ii. (Fr               |                                                                            |
| 4F             | Mean                       | 98.0                       | 10.6              | 8.8                      | 19.4                  |                                                                            |
|                | SD                         | 19.1                       | 6.7               | 10.0                     | 6.3                   |                                                                            |
|                | N                          | 15                         | 5                 | 5,000                    | 5                     |                                                                            |

Table 4 Summary of Food Consumption (g/animal/day)

| Tabl  |                  | od Congrum           | ation (alonim | ol/dow)                               |                                                     |                            |             | Test Facility | Page<br>Study No. 50020 |
|-------|------------------|----------------------|---------------|---------------------------------------|-----------------------------------------------------|----------------------------|-------------|---------------|-------------------------|
|       | •                | _                    | ption (g/anim | ai/day)                               |                                                     | D.V. 1645                  | 0.0 /1 **   | ons           |                         |
| -     | 1 - Reference    | Item<br>47 27 μg/dos | 0             |                                       | <del>-</del>                                        | - mRNA-1647<br>- mRNA-1647 | 8.9 µg/dose |               |                         |
| Group | ) 3 - IIIKINA-10 | 147 27 μg/dos        | e             |                                       | Group 4                                             | - IIIKINA-104/             | 89 μg/dose  |               |                         |
| Group | /                |                      |               |                                       | Day (F                                              | rom/To)                    | 1, 20       |               | _                       |
| Sex   |                  | -9/1                 | 1/8           | 8/15                                  | 15/22                                               | 22/29                      | 29/36       | 36/43         | 43/50                   |
|       |                  |                      |               |                                       |                                                     |                            | all leading |               |                         |
| lM    | Mean             | 29.79                | 32.44         | 33.35                                 | 34.38                                               | 35.31                      | 35.08       | 35.83         | 34.50                   |
|       | SD               | 2.04                 | 2.32          | 2.78                                  | 2.09                                                | 1.99                       | 1.90        | 1.89          | 0.60                    |
|       | N                | 15                   | 15            | 15                                    | 34.38<br>2.09<br>15<br>33.52<br>1.61<br>10<br>-2.50 | ads) or                    | 15          | 15            | 4                       |
| 2M    | Mean             | 30.26                | 31.32         | 33.02                                 | 33.52<br>1.61<br>-2.50<br>31.72<br>0.94             | 34.60                      | 33.55       | 33.85         |                         |
| .1.1  | SD               | 0.71                 | 0.57          | 1.67                                  | 1.61                                                | 1.11                       | 1.67        | 1.63          |                         |
|       | N                | 7                    | 10            | 10                                    | 10 0113                                             | × 10                       | 10          | 10            |                         |
|       | %Diff G1         | 1.58                 | -3.45         | -0.98                                 | -2.50                                               | -2.02                      | -4.36       | -5.52         |                         |
|       |                  |                      |               | Ø                                     | 11. 30 40                                           |                            |             |               |                         |
| 3M    | Mean             | 27.69                | 28.56         | 31.18                                 | 31.72                                               | 32.89                      | 31.89       | 33.51         |                         |
|       | SD               | 0.76                 | 1.51          | 1.13                                  | 0.94                                                |                            | 1.40        | 1.62          |                         |
|       | N                | 7                    | 10            | 10                                    | 10                                                  | 10                         | 10          | 10            |                         |
|       | %Diff G1         | -7.05                | -11.96        | 31.18<br>1.13<br>10<br>-6.50<br>35.05 | -7.74                                               | -6.86                      | -9.09       | -6.47         |                         |
| 4M    | Mean             | 30.79                | 30.11         | 35.05                                 | 33.24                                               | 36.78                      | 33.65       | 36.55         | 34.88                   |
| 1171  | SD               | 0.91                 | 1.13          | 1.28                                  | 1.14                                                | 1.16                       | 0.80        | 1.52          | 0.44                    |
|       | N                | 15                   | 15 N          | 1.28<br>1.5<br>5.10                   | 15                                                  | 15                         | 15          | 15            | 5                       |
|       | %Diff G1         | 3.36                 | -7.190        | 5 10                                  | -3.32                                               | 4.15                       | -4.09       | 2.03          | 1.10                    |

| Group 2 - mRNA-1647 | 8.9 | μg/dose |
|---------------------|-----|---------|
| Group 4 - mRNA-1647 | 89  | μg/dose |

| Table          | 4                          |                           | , Varie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------|----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sumn           | nary of Fo                 | ood Consumption (         | (g/animal/day)  Group 2 mPNA 1647 8.0 ug/daga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Group 3        | l - Referenc<br>3 - mRNA-1 | e Item<br>.647 27 μg/dose | Group 2 - mRNA-1647 8.9 μg/dose<br>Group 4 - mRNA-1647 89 μg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Group /<br>Sex |                            | Day (From/To)<br>50/56    | ad super 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1M             | Mean                       | 34.23                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | SD                         | 1.35                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | N                          | 4                         | apply of the second of the sec |
| 2М             | Mean                       |                           | En al of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ∠1 <b>V1</b>   | SD                         |                           | 20° 2110 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | N                          | <del></del>               | oliko jijs akolik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | %Diff G1                   |                           | S. F. VO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 03.6           | Mass                       |                           | 84, 95, 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5M             | viean                      |                           | Sill EC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | N                          |                           | alte all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | %Diff G1                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4M             | Mean                       | 37.18                     | X ALCOUNTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | SD                         | 0.66                      | 20,314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | N                          | 5                         | EUR, ude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | %Diff G1                   | 8.63                      | 16 4 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5002034        | This do                    | Junent cannot be us       | Group 2 - mRNA-1647 8.9 µg/dose Group 4 - mRNA-1647 8.9 µg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 4 Summary of Food Consumption (g/animal/day)

| Table          | e 4            |                   |                |                                              |                                                                     |                  |             | Test Facility | Page 6<br>Study No. 500203 |
|----------------|----------------|-------------------|----------------|----------------------------------------------|---------------------------------------------------------------------|------------------|-------------|---------------|----------------------------|
| Sumi           | mary of Foo    | od Consump        | otion (g/anima | ıl/day)                                      |                                                                     |                  |             | 501           |                            |
| Groun          | 1 - Reference  | Item              |                |                                              | Group 2                                                             | 2 - mRNA-1647    | 8.9 ug/dose | Olis          |                            |
| -              |                | 647 27 μg/dose    | e              |                                              | <del>-</del>                                                        | 4 - mRNA-1647    |             | ,<br>N        |                            |
|                | ,              |                   |                |                                              |                                                                     | (77)             | etio        |               |                            |
| Group /<br>Sex | /              | -9/1              | 1/8            | 8/15                                         | Day (F<br>15/22                                                     | rom/To)<br>22/29 | 29/36       | 36/43         | 43/50                      |
|                |                | 2/-2              | 1,0            | <i>0,</i> 10                                 | 10,22                                                               |                  | and anily   | 5 67 15       |                            |
|                | 3.5            | 22.04             | 22.02          | 22.15                                        | 22.00                                                               | 22.24.0          | 0000        | 22.10         | 22.20                      |
| lF             | Mean           | 22.94             | 23.02          | 23.17                                        | 23.99                                                               | 23.81            | 23.97       | 23.18         | 23.28                      |
|                | SD             | 1.47              | 1.47           | 1.43                                         | 1.66                                                                | 1,400            | 1.13        | 1.49          | 1.20                       |
|                | N              | 12                | 15             | 15                                           | 15                                                                  | 1.40             | 15          | 15            | 5                          |
| F              | Mean           | 22.25             | 23.38          | 24.17                                        | 24.37                                                               | 24.28            | 24.50       | 23.83         |                            |
|                | SD             | 1.14              | 0.61           | 0.88                                         | 1.65                                                                | 2.03             | 1.12        | 1.44          |                            |
|                | N              | 10                | 10             | 10                                           | 20                                                                  | 10               | 10          | 10            |                            |
|                | %Diff G1       | -3.01             | 1.56           | 4.33                                         | 23.99<br>1.66<br>15<br>24.37<br>1.65<br>10<br>1.60<br>24.19<br>1.12 | 1.96             | 2.20        | 2.80          |                            |
| F              | Mean           | 22.13             | 23.37          | 24.13<br>0.91<br>10<br>4.16<br>23.57<br>2.29 | 24 19                                                               | 24.72            | 24.45       | 24.64         |                            |
| Г              | SD             | 0.23              | 0.60           | 0.01                                         | 4 12                                                                | 1.31             | 1.57        | 1.04          |                            |
|                | N              | 7                 | 10             | 10                                           | 10                                                                  | 10               | 10          | 10            |                            |
|                | %Diff G1       | -3.54             | 1.52           | 4 16                                         | 0.85                                                                | 3.81             | 1.99        | 6.30          |                            |
|                | , ULJ III (J I | -J.J <del>.</del> | 1.52           | ary allo                                     | 0.05                                                                | 3.01             | 1.//        | 0.50          |                            |
| F              | Mean           | 21.65             | 21.89          | 23.57                                        | 24.00                                                               | 23.84            | 23.63       | 24.17         | 23.08                      |
|                | SD             | 1.44              | 1.81           | 2.29                                         | 1.91                                                                | 2.10             | 2.15        | 2.45          | 0.71                       |
|                | N              | 15                | الم 15         | 15                                           | 15                                                                  | 15               | 15          | 15            | 5                          |
|                | %Diff G1       | -5.62             | -4.92          | 1.76                                         | 0.06                                                                | 0.11             | -1.45       | 4.29          | -0.86                      |

| - 4401  | e 4           |                          | Test Facility Study No.  on (g/animal/day)  Group 2 - mRNA-1647 8.9 μg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|---------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sumi    | mary of Fo    | od Consumptio            | on (g/animal/day)  Group 2 mPNA 1647 8.0 mg/daga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Group   | 3 - mRNA-1    | e item<br>647 27 μg/dose | Group 4 - mRNA-1647 89 μg/dose  Group 4 - mRNA-1647 89 μg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Group : | l             | Day (From/To)<br>50/56   | Group 2 - mRNA-1647 8.9 µg/dose Group 4 - mRNA-1647 8 - mg/dose Group 4 - mg/dose Grou |
| 1F      | Mean          | 25.18                    | "iol color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | SD<br>N       | 0.66<br>5                | adjest, 13 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2F      | Mean          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | SD            |                          | 100° E3110120°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | N<br>%Diff G1 | <br>                     | Cashinol Oks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3F      | Mean          |                          | or of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | SD<br>N       |                          | it of the second |
|         | %Diff G1      |                          | ay modified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4F      | Mean          | 24.84                    | of all coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | SD<br>N       | 0.77<br>5                | Supple det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | %Diff G1      | -1.35                    | 1,60 g/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 5 **Summary of Body Temperature Values** 

|             |                |                |                    |               |                                                              |                   | Test Facility |
|-------------|----------------|----------------|--------------------|---------------|--------------------------------------------------------------|-------------------|---------------|
|             |                |                |                    |               |                                                              |                   | idilo         |
| Tabl        | e 5            |                |                    |               |                                                              |                   | 13/10         |
| Sum         | mary of Ro     | dy Tempera     | tura Values        |               |                                                              |                   | Test Facility |
|             | •              | • •            | ture varues        |               |                                                              |                   | ONS           |
|             | ıp 1 - Referen |                |                    |               | Group 2 - mRNA                                               | A-1647 8.9 μg/dos | 30 Cal        |
| Grou        | ıp 3 - mRNA-   | -1647 27 μg/do | se                 |               | Group 4 - mRNA                                               | A-1647 89 μg/dos  | ies)          |
|             | 4              |                |                    |               |                                                              | 761               | 201           |
| Paran       | Doug           | Temp           |                    |               |                                                              | any               |               |
|             | °C             |                |                    |               |                                                              | No Mo             |               |
| Group       | /              |                | Day 1              | Day 2         |                                                              | y 43              | Day 44        |
| Sex         |                | pr             | p                  |               | pr                                                           | SP SP             |               |
| 1 <b>M</b>  | Mean           | 36.24          | 35.26              | 37.45         | 36.23                                                        |                   | 36.91         |
|             | SD             | 0.44           | 0.88               | 0.50          | 36.23                                                        | 36.79<br>0.56     | 0.65          |
|             | N              | 15             | 15                 | 15            | 0.15;(01)(0)                                                 | 15                | 14            |
|             |                |                |                    |               | 100 :00 :00 is                                               |                   |               |
| 2M          | Mean           | 36.82b         | 35.99              | 36.92d        | 36.89d                                                       | 36.66             | 36.47         |
|             | SD             | 0.25           | 0.52               | 0.24          | 0.84                                                         | 0.49              | 0.41          |
|             | N<br>avp:m.c.t | 10             | 10                 | 10            | 790                                                          | 10                | 10            |
|             | %Diff G1       | 1.60           | 2.07               | -1.42         | 1.81                                                         | -0.36             | -1.20         |
| 3M          | Mean           | 36.64          | 36.66e             | 37.13         | 0.41<br>15<br>36.89d<br>0.84<br>10<br>1.81<br>37.97f<br>0.60 | 37.60e            | 36.99         |
|             | SD             | 0.26           | 1.06               | 37.13<br>0.41 | 0.60                                                         | 0.66              | 0.28          |
|             | N              | 10             | 10                 | 10 10         | 10                                                           | 10                | 10            |
|             | %Diff G1       | 1.10           | 3.97               | 37.47<br>0.55 | 4.79                                                         | 2.19              | 0.21          |
| 4M          | Mean           | 36.61          | 38.05f             | 37.47         | 36.81d                                                       | 37.53e            | 37.29         |
| <b>→1AT</b> | SD             | 0.52           | 1 08               | 0.55          | 0.56                                                         | 0.52              | 0.73          |
|             | N<br>N         | 15             | 1.08<br>15<br>7.90 | 15            | 15                                                           | 15                | 15            |
|             | %Diff G1       | 1.01           | 07 90.50           | 0.05          | 1.60                                                         | 2.01              | 1.01          |
|             | 70DIII 01      | 1.01           | 500                | 0.05          | 1.00                                                         | 2.01              | 1.01          |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunn)  $d=p \le 0.05, e=p \le 0.01, f=p \le 0.001$  (Dunnett)

Table 5 **Summary of Body Temperature Values** 

| Tabl  |                        | dy Tompon                  | Anno Volvog                         |                              |                   |                  | Test Facilit  | Page 66<br>y Study No. 5002034 |
|-------|------------------------|----------------------------|-------------------------------------|------------------------------|-------------------|------------------|---------------|--------------------------------|
|       | •                      | dy Tempera                 | ture values                         |                              | Correct 2 and DNI | A 1647 9.0/1-    | :015          |                                |
|       | up 1 - Reference       | ce item<br>1647-27 µg/do   |                                     |                              | Group 4 mRN       | A-1647 8.9 μg/do | CP -          |                                |
| Grot  | ль э - шкиу <b>А</b> - | 10 <del>1</del> 1 21 μg/α0 | 200                                 |                              | Group 4 - IIIKN   | A-1647 89 μg/dos | F 2           |                                |
| Param | neter: Body<br>°C      | Тетр                       |                                     |                              |                   | and any          | 1221<br>1221  |                                |
| Group | 1                      |                            | Day 1                               | Day 2                        | Day 3             | Sign Sept I      | Day 43        | Day 44                         |
| Sex   |                        | pr                         | p                                   |                              |                   | ilo Spr          | p             |                                |
|       |                        |                            |                                     |                              | die               | 20 12            |               |                                |
| 1F    | Mean<br>SD             | 37.32<br>0.41              | 36.25<br>0.50                       | 37.62                        | 26k               | 0.61             | 37.04<br>0.58 | 37.39<br>0.71                  |
|       | N<br>N                 | 15                         | 15                                  | 0.33                         | 8 000             | 15               | 15            | 15                             |
|       | IN                     | 13                         | 13                                  | 13                           | 200 - All 1200    | 13               | 13            | 13                             |
| 2F    | Mean                   | 37.59                      | 36.79a                              | 37.37                        | 110.11201011      | 37.98            | 37.31         | 37.58                          |
|       | SD                     | 0.42                       | 0.41                                | 0.32                         | "HO 70.           | 0.59             | 0.60          | 0.57                           |
|       | N                      | 10                         | 10                                  | 10                           | 9/2 40-           | 10               | 10            | 10                             |
|       | %Diff G1               | 0.72                       | 1.48                                | -0.66                        | ()                | -0.07            | 0.73          | 0.52                           |
|       |                        |                            |                                     | "Kerri K                     | 7                 |                  |               |                                |
| 3F    | Mean                   | 37.50                      | 36.87b                              | 37.67                        |                   | 38.43            | 37.78b        | 37.88                          |
|       | SD                     | 0.47                       | 0.54                                | 0.35                         |                   | 0.57             | 0.46          | 0.74                           |
|       | N                      | 10                         | 10                                  | 10                           |                   | 10               | 10            | 10                             |
|       | %Diff G1               | 0.48                       | 1.70                                | Q <sup>0:13</sup>            |                   | 1.11             | 2.00          | 1.32                           |
| 4F    | Mean                   | 37.64                      | 37.55c                              | 10<br>0.13<br>38.56c<br>0.53 | 37.55             | 37.77            | 38.59c        | 38.12b                         |
|       | SD                     | 0.51                       | 0.44                                | 0.53                         | 0.48              | 0.74             | 0.34          | 0.57                           |
|       | N                      | 15                         | 0.44 ST 11/10<br>15 S 3.59 SE 11/10 | 15                           | 15                | 15               | 15            | 15                             |
|       | %Diff G1               | 0.86                       | 3.59                                | 2.50                         |                   | -0.63            | 4.18          | 1.96                           |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

Table 6
Summary of Hematology Values: Day 44

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose

| Group /        |          |                |                 |                  |                 |                | 7.2             |                |
|----------------|----------|----------------|-----------------|------------------|-----------------|----------------|-----------------|----------------|
| Group /<br>Sex |          | WBC<br>10^3/uL | NEUT<br>10^3/uL | LYMPH<br>10^3/uL | MONO<br>10^3/uL | EOS<br>10^3/uL | BASO<br>10^3/uL | LUC<br>10^3/uL |
|                |          | 10 3/uL        | 10 5/uL         | 10 5/uL          | 10 3/uL         | 10 5/uL        | TO S/UL         | 10° 5/uL       |
| 1M             | Mean     | 10.570         | 1.595           | 8.402            | 0.303           | 0.108          | 0.020           | 0.138          |
|                | SD       | 3.788          | 0.794           | 3.157            | 0.067           | 0.043          | 0.013           | 0.063          |
|                | N        | 10             | 10              | 10               | 10              | 000            | 10              | 10             |
| 2M             | Mean     | 10.776         | 2.920           | 7.017            | 0.236           | 0.277b         | 0.020           | 0.304e         |
|                | SD       | 1.208          | 0.957           | 1.092            | 0.070           | 0.072          | 0.007           | 0.142          |
|                | N        | 10             | 10              | 10               | مان 10 مراد     | 10             | 10              | 10             |
|                | %Diff G1 | 1.949          | 83.072          | -16.484          | -22.112         | 156.481        | 0.000           | 120.290        |
| 3M             | Mean     | 14.091         | 6.990f          | 6.259            | 0,216           | 0.301b         | 0.023           | 0.304e         |
| J1V1           | SD       | 2.499          | 1.908           | 1.840            | 0.114           | 0.068          | 0.009           | 0.104          |
|                | N        | 10             | 10              | 10               | 10              | 10             | 10              | 10             |
|                | %Diff G1 | 33.311         | 338.245         | -25.506          | -28.713         | 178.704        | 15.000          | 120.290        |
| 4M             | Mean     | 18.827c        | 11.493f         | 6.487            | 0.188d          | 0.413c         | 0.023           | 0.251          |
| 1112           | SD       | 3.862          | 2.497           | 1.959            | 0.098           | 0.147          | 0.013           | 0.092          |
|                | N        | 10             | 10              | 2010             | 10              | 10             | 10              | 9              |
|                | %Diff G1 | 78.117         | 620.564         | -22.792          | -37.954         | 282.407        | 15.000          | 81.965         |

Significantly different from control group 1 value : $a=p\le0.05,b=p\le0.01,c=p\le0.001$  (Dunn)  $d=p\le0.05,e=p\le0.01,f=p\le0.001$  (Dunnett)

Table 6 **Summary of Hematology Values: Day 44** 

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 µg/dose

| Group / |          | RBC     | HGB   | НСТ   | MCV       | мсн   | MCHC  | RDW    |
|---------|----------|---------|-------|-------|-----------|-------|-------|--------|
| Sex     |          | 10^6/uL | g/dL  | %     | fL(um3)   | pg    | g/dL  | %      |
| 1M      | Mean     | 7.682   | 13.69 | 41.38 | 53.87     | 17.84 | 33.10 | 12.70  |
| 1141    | SD       | 0.252   | 0.35  | 1.29  | 1.50      | 0.60  | 0.49  | 0.66   |
|         | N        | 10      | 10    | 10    | 10        | 00    | 10    | 10     |
| 2M      | Mean     | 7.817   | 13.59 | 41.54 | 53.16     | 17.41 | 32.73 | 13.05  |
|         | SD       | 0.290   | 0.36  | 1.05  | 1276      | 0.67  | 0.39  | 0.43   |
|         | N        | 10      | 10    | 10    | ما 10 زاد | 10    | 10    | 10     |
|         | %Diff G1 | 1.757   | -0.73 | 0.39  | 1.32      | -2.41 | -1.12 | 2.76   |
| 3М      | Mean     | 7.590   | 13.30 | 40.50 | 53,36     | 17.51 | 32.83 | 13.46b |
|         | SD       | 0.228   | 0.41  | 1.32  | 0.98      | 0.31  | 0.27  | 0.52   |
|         | N        | 10      | 10    | 10    | 10        | 10    | 10    | 10     |
|         | %Diff G1 | -1.198  | -2.85 | -2.43 | -0.95     | -1.85 | -0.82 | 5.98   |
| 4M      | Mean     | 7.900   | 13.93 | 42.58 | 53.88     | 17.66 | 32.74 | 13.82c |
|         | SD       | 0.237   | 0.45  | 1.57  | 0.89      | 0.30  | 0.45  | 0.43   |
|         | N        | 10      | 10    | 20    | 10        | 10    | 10    | 10     |
|         | %Diff G1 | 2.838   | 1.75  | 2.90  | 0.02      | -1.01 | -1.09 | 8.82   |

| Table          | e 6                                  |                                          |                                                                                                   |               |                                          |                           | est Facility Study No |
|----------------|--------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------|---------------|------------------------------------------|---------------------------|-----------------------|
| Group          | mary of He 1 - Reference 3 - mRNA-16 | matology Val<br>: Item<br>647 27 μg/dose | lues: Day 44                                                                                      | Gı<br>Gı      | roup 2 - mRNA-1647<br>roup 4 - mRNA-1647 | 8.9 μg/dose<br>89 μg/dose | 50                    |
| Group .<br>Sex | /                                    | PLT<br>10^3/uL                           | RETIC<br>10^9/L                                                                                   |               |                                          | and amber 2011            |                       |
| 1M             | Mean<br>SD<br>N                      | 1078.6<br>95.1<br>10                     | 220.08<br>27.59<br>10                                                                             |               | oplication                               | Seli                      |                       |
| 2M             | Mean<br>SD<br>N<br>%Diff G1          | 1043.8<br>132.4<br>10<br>-3.2            | RETIC 10^9/L  220.08 27.59 10  223.42 31.08 10 1.52  213.30 25.80 10 -3.08  218.49 26.57 10 -0.72 | na cutho      | isation 2007 or                          |                           |                       |
| 3M             | Mean<br>SD<br>N<br>%Diff G1          | 1059.2<br>117.1<br>10<br>-1.8            | 213.30<br>25.80<br>10<br>-3.08                                                                    | Marketing & P |                                          |                           |                       |
| 4M             | Mean<br>SD<br>N<br>%Diff G1          | 1063.1<br>73.4<br>10<br>-1.4             | 218.49<br>26.57<br>10<br>-0.72                                                                    | Sedim         |                                          |                           |                       |
| 500203         | 4                                    | nentcannoth                              | -0.72 SUN JINGE                                                                                   |               |                                          |                           |                       |

Table 6
Summary of Hematology Values: Day 44

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose

| _         |          |                |                 |                  |                 |                | 7,00            |                |
|-----------|----------|----------------|-----------------|------------------|-----------------|----------------|-----------------|----------------|
| Group Sex | ,        | WBC<br>10^3/uL | NEUT<br>10^3/uL | LYMPH<br>10^3/uL | MONO<br>10^3/uL | EOS<br>10^3/uL | BASO<br>10^3/uL | LUC<br>10^3/uL |
|           |          |                |                 |                  |                 | .0             | 76,             |                |
| 1F        | Mean     | 6.541          | 0.724           | 5.498            | 0.151           | 0.069          | 0.010           | 0.087          |
|           | SD       | 1.905          | 0.338           | 1.893            | 0.058           | 0.022          | 0.005           | 0.039          |
|           | N        | 10             | 10              | 10               | 10              | 000            | 10              | 10             |
| 2F        | Mean     | 7.919          | 3.320           | 4.026            | 0.126           | 0.275b         | 0.008           | 0.166          |
|           | SD       | 1.209          | 0.645           | 0.880            | 0.061           | 0.057          | 0.006           | 0.100          |
|           | N        | 10             | 10              | 10               | ما الله الله    | 10             | 10              | 10             |
|           | %Diff G1 | 21.067         | 358.564         | -26.773          | -16.556         | 298.551        | -20.000         | 90.805         |
| 3F        | Mean     | 9.060a         | 4.490c          | 3.996            | 0,110           | 0.272b         | 0.009           | 0.181          |
| -         | SD       | 1.455          | 0.983           | 0.772            | 0.039           | 0.122          | 0.003           | 0.085          |
|           | N        | 10             | 10              | 10               | 10              | 10             | 10              | 10             |
|           | %Diff G1 | 38.511         | 520.166         | -27.319          | -27.152         | 294.203        | -10.000         | 108.046        |
| 4F        | Mean     | 11.735c        | 6.434c          | 4.555            | 0.102           | 0.451c         | 0.012           | 0.176          |
|           | SD       | 3.029          | 1.624           | 1.495            | 0.036           | 0.265          | 0.009           | 0.105          |
|           | N        | 10             | 10              | 2010             | 10              | 10             | 10              | 10             |
|           | %Diff G1 | 79.407         | 788.674         | -17.152          | -32.450         | 553.623        | 20.000          | 102.299        |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunn)

Table 6 **Summary of Hematology Values: Day 44** 

Group 3 - mRNA-1647 27 µg/dose

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 µg/dose

| iroup /<br>ex |          | RBC     | HGB   | НСТ       | MCV        | MCH   | MCHC  | RDW    |
|---------------|----------|---------|-------|-----------|------------|-------|-------|--------|
| EX.           |          | 10^6/uL | g/dL  | %         | fL(um3)    | pg    | g/dL  | %      |
| lF            | Mean     | 7.102   | 12.75 | 38.01     | 53.50      | 17.98 | 33.56 | 11.51  |
| lr            | SD       | 0.224   | 0.44  | 1.31      | 0.89       |       | 0.21  | 0.44   |
|               | N N      | 10      | 10    | 10        | 10         | 0.34  | 10    | 10     |
| 2F            | Mean     | 6.916   | 12.51 | 37.43     | 54.11      | 18.12 | 33.47 | 11.89  |
| 21            | SD       | 0.302   | 0.63  | 1.86      | 0.91       | 0.38  | 0.60  | 0.55   |
|               | N        | 10      | 10    | 10        | 1)10 all a | 10    | 10    | 10     |
|               | %Diff G1 | -2.619  | -1.88 | -1.53     | D. 1111    | 0.78  | -0.27 | 3.30   |
|               |          |         |       | eil eil   |            |       |       |        |
| 3F            | Mean     | 6.960   | 12.69 | 37.90     | 54,53      | 18.26 | 33.47 | 12.19a |
|               | SD       | 0.491   | 0.86  | 2.58      | 1.52       | 0.62  | 0.57  | 0.62   |
|               | N        | 10      | 10    | 10        | 10         | 10    | 10    | 10     |
|               | %Diff G1 | -1.999  | -0.47 | -0.29     | 1.93       | 1.56  | -0.27 | 5.91   |
| 4F            | Mean     | 7.176   | 13.03 | 38.69     | 53.92      | 18.19 | 33.69 | 12.79c |
|               | SD       | 0.274   | 0.37  | 1.25      | 0.99       | 0.31  | 0.50  | 0.49   |
|               | N        | 10      | 10    | <b>10</b> | 10         | 10    | 10    | 10     |
|               | %Diff G1 | 1.042   | 2.20  | 1.79      | 0.79       | 1.17  | 0.39  | 11.12  |

Table 6 **Summary of Hematology Values: Day 44** 

| 1 - Reference<br>3 - mRNA-16 | Item<br>547 27 μg/dose                                                       | ues: Day 44                                                                                                                                                                                                   | Group 2 - mRNA-1647 8.9 μg/dose<br>Group 4 - mRNA-1647 89 μg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /                            | PLT<br>10^3/uL                                                               | RETIC<br>10^9/L                                                                                                                                                                                               | and anyer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean                         | 1060.4                                                                       | 185.68                                                                                                                                                                                                        | ion certification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SD                           | 172.2                                                                        | 23.56                                                                                                                                                                                                         | ::(2,13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N                            | 10                                                                           | 10                                                                                                                                                                                                            | applion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mean                         | 1019.1                                                                       | 196.20                                                                                                                                                                                                        | 200,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SD                           | 100.9                                                                        | 32.57                                                                                                                                                                                                         | Operation 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| N                            | 10                                                                           | 10                                                                                                                                                                                                            | out of the character of |
| %Diff G1                     | -3.9                                                                         | 5.67                                                                                                                                                                                                          | Ma. Sithe No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mean                         | 971.1                                                                        | 218.11                                                                                                                                                                                                        | 0,00,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SD                           | 95.1                                                                         | 36.36                                                                                                                                                                                                         | CHILLE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N                            | 10                                                                           | 10                                                                                                                                                                                                            | The Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| %Diff G1                     | -8.4                                                                         | 17.47                                                                                                                                                                                                         | A Missio,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mean                         | 868.1b                                                                       | 198.61                                                                                                                                                                                                        | × 41, 30,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SD                           | 102.0                                                                        | 36.03                                                                                                                                                                                                         | 201, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| N                            | 10                                                                           | 10                                                                                                                                                                                                            | × %0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| %Diff G1                     | -18.1                                                                        | 6.96                                                                                                                                                                                                          | The state of the s |
| •                            | Mean SD N Mean SD N Mean SD N Moiff G1 Mean SD N %Diff G1 Mean SD N %Diff G1 | 1 - Reference Item 3 - mRNA-1647 27 μg/dose  PLT 10^3/uL  Mean 1060.4 SD 172.2 N 10  Mean 1019.1 SD 100.9 N 10 %Diff G1 -3.9  Mean 971.1 SD 95.1 N 10 %Diff G1 -8.4  Mean 868.1b SD 102.0 N 10 %Diff G1 -18.1 | PLT RETIC 10^3/uL 10^9/L  Mean 1060.4 185.68 SD 172.2 23.56 N 10 10  Mean 1019.1 196.20 SD 100.9 32.57 N 10 10 %Diff G1 -3.9 5.67  Mean 971.1 218.11 SD 95.1 36.36 N 10 10 %Diff G1 -8.4 17.47  Mean 868.1b 198.61 SD 102.0 36.03 N 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

Table 6 **Summary of Hematology Values: Day 57** 

| Table 6        |                  |                 |                  |                 |                | Т               | Cest Facility Station |
|----------------|------------------|-----------------|------------------|-----------------|----------------|-----------------|-----------------------|
| ummary o       | f Hematology Val | lues: Day 57    |                  |                 |                |                 | ns or Vo              |
| Group 1 - Refe | rence Item       |                 |                  | Group 4 -       | mRNA-1647 89   | μg/dose         | ,                     |
| Group /<br>Sex | WBC<br>10^3/uL   | NEUT<br>10^3/uL | LYMPH<br>10^3/uL | MONO<br>10^3/uL | EOS<br>10^3/uL | BASO<br>10^3/uL | LUC<br>10^3/uL        |
| M Mean         | 9.998            | 2.120           | 7.315            | 0.288           | 0.133<br>0.043 | 0.015           | 0.125                 |
| SD<br>N        | 2.902<br>4       | 1.787<br>4      | 1.616<br>4       | 0.154<br>4      | 4              | 0.006<br>4      | 0.090<br>4            |
| Mean SD        | 10.702<br>0.998  | 1.342<br>0.266  | 8.692<br>0.934   | 0.384           | 0.130<br>0.057 | 0.016<br>0.005  | 0.138<br>0.053        |
| N<br>%Diff     | 5                | 5 -36.698       | 5<br>18.824      | 33.565          | 5 -1.887       | 5<br>6.667      | 5<br>10.400           |

Table 6 **Summary of Hematology Values: Day 57** 

|         |                   |                   |                  |                 |                                           |                                        | T (1)   |        |
|---------|-------------------|-------------------|------------------|-----------------|-------------------------------------------|----------------------------------------|---------|--------|
| Group . | /                 |                   |                  |                 |                                           |                                        | 32.20   |        |
| Sex     |                   | RBC               | HGB              | HCT             | MCV                                       | MCH                                    | MCHC    | RDW    |
|         |                   | 10^6/uL           | g/dL             | %               | fL(um3)                                   | pg                                     | g/dL    | %      |
|         | Maan              | 7.042             | 12.62            | 40.00           | <i>5</i> 2 10                             | 17.20                                  | 0 22 22 | 10.72  |
| 1M      | Mean              | 7.843             | 13.63            | 40.90           | 52.18                                     | 17.38                                  | 33.33   | 12.73  |
|         | SD                | 0.207             | 0.17             | 0.89            | 0.67                                      | (C) (S)                                | 0.63    | 0.57   |
|         | N                 | 4                 | 4                | 4               | 4                                         | 004                                    | 4       | 4      |
| 4M      | Mean              | 7.656             | 13.36            | 41.00           | fL(um3)  52.18 0.67 4  53.54a 0.68 5 2.62 | MCH pg  17.38 0.41 4 17.48 0.40 5 0.60 | 32 64   | 14.60b |
| +1V1    | SD                | 0.250             | 0.33             | 1.16            | 0.68                                      | 0 40                                   | 0.40    | 0.61   |
|         | N N               | 5                 | 5                | 5               | 42,300                                    | 5                                      | 5       | 5      |
|         | %Diff G1          | -2.378            | -1.94            | 0.24            | 8) 282 A                                  | 0.60                                   | -2 06   | 14.73  |
|         | /0DIII G1         | -2.576            | -1,,,,           | 0,24            | Q. 12.02                                  | 0.00                                   | -2.00   | 14.75  |
|         |                   |                   |                  | ⊘`              | 7.0. 4                                    |                                        |         |        |
| Signif  | ticantly differed | nt from control g | roup 1 value :a= | p≤0.05,b=p≤0.01 | i,c=p <u>≤</u> 0.001 (T-tes               | t)                                     |         |        |
|         |                   |                   |                  | and dillage     | 1,c=p≤0.001 (T-tes                        |                                        |         |        |
|         |                   |                   |                  | 'SIL'SOD        |                                           |                                        |         |        |
|         |                   |                   |                  | or Ro           |                                           |                                        |         |        |
|         |                   |                   | 101              | 5 701           |                                           |                                        |         |        |
|         |                   |                   | 60,,             | ILO             |                                           |                                        |         |        |
|         |                   |                   | 7,009            | ·               |                                           |                                        |         |        |
|         |                   |                   | 660 720          |                 |                                           |                                        |         |        |
|         |                   |                   | 113 160          |                 |                                           |                                        |         |        |
|         |                   | , 6               | S. S.            |                 |                                           |                                        |         |        |
|         |                   | 201               |                  |                 |                                           |                                        |         |        |
|         |                   | alli              |                  |                 |                                           |                                        |         |        |
|         |                   | a' Co             |                  |                 |                                           |                                        |         |        |
| 500203  | 4                 | rell.             |                  |                 |                                           |                                        |         |        |
| 500205  | ·                 | .C.               |                  |                 |                                           |                                        |         |        |
|         | 2003              |                   |                  |                 |                                           |                                        |         |        |
|         | .5                |                   |                  |                 |                                           |                                        |         |        |
|         | /Win              |                   |                  |                 |                                           |                                        |         |        |
|         | *                 |                   |                  |                 |                                           |                                        |         |        |
|         |                   |                   |                  |                 |                                           |                                        |         |        |

| Page 7  Test Facility Study No. 500203  Table 6  Summary of Hematology Values: Day 57  Group 1 - Reference Item  Group 4 - mRNA-1647 89 μg/dose  Plan  Group 4 - mRNA-1647 89 μg/dose  Plan  Group 4 - mRNA-1647 89 μg/dose  Howard 105-3 nd. 105-91.  N 4 4 4  M Mean 105-6 265-30a SD 119-7 32-08 N 5 5 5 %/Diff GI 10.7 23-61  Significantly different from control group 1 value :a=p=0.05,b=p=0.01,e=p=0.001 (T-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tabl         | e 6                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gilati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Group 1 - Reference Item  Group 4 - mRNA-1647 89 μg/dose  Here is a second of the property of  | Sum          | mary of He          | ematology Va         | lues: Day 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Group / Sex PLT RETIC 10^3/uL 10^9/L  1M Mean 999.0 214.63 SD 135.9 18.22 N 4 4  4M Mean 1105.6 265.30a SD 119.7 32.68 N 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Group        | 1 - Reference       | e Item               | in a contract of the contract | Group 4 - mRNA-1647 89 μg/dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Group / Sex PLT RETIC 10^3/uL 10^9/L  1M Mean 999.0 214.63 SD 135.9 18.22 N 4 4  4M Mean 1105.6 265.30a SD 119.7 32.68 N 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etiens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1M Mean 999.0 214.63<br>SD 135.9 18.22<br>N 4 4  4M Mean 1105.6 265.30a<br>SD 119.7 32.68<br>N 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Group<br>Sex | /                   | PLT<br>10^3/uL       | RETIC<br>10^9/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and amber 20th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4M Mean 1105.6 265.30a<br>SD 119.7 32.68<br>N 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1M           | Mean<br>SD<br>N     | 999.0<br>135.9<br>4  | 214.63<br>18.22<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | olication septe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4M           | Mean<br>SD<br>N     | 1105.6<br>119.7<br>5 | 265.30a<br>32.68<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The base of the second of the  |
| %Diff G1 10.7 23.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | SD<br>N<br>%Diff G1 | 119.7<br>5<br>10.7   | 32.68<br>5<br>23.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | orna, europaisation 20dal 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-6          |                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * and collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-8          |                     |                      | ્રં                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA CATISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EURPORT and Individual Control of the Control of th | 3-8          |                     |                      | cup of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Regulation of the second of th |
| ad to support any main tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                     |                      | ed to support a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A Redulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Se Led to Support any main and production of the control of the co |              |                     |                      | e used to support of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regulative Commence of the Com |
| and be used to support any main and the used under Redulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                     | anot                 | pe used to support a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regulative Commence of the Com |
| rt canot be used to support any main and the used to support and the used to support any main and the used to support and the used to support any main and the used to support and the used to support any main and the used to support any main and the used to support any main and the used to support and the used to support and the used to support and the used to s |              |                     | nt cannot            | sused to support to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regulative Commence of the Com |

Table 6 **Summary of Hematology Values: Day 57** 

| Table (        | Test Facility Study le 6 nmary of Hematology Values: Day 57 |                |                 |                  |                 |                |                 |                |  |  |  |  |
|----------------|-------------------------------------------------------------|----------------|-----------------|------------------|-----------------|----------------|-----------------|----------------|--|--|--|--|
| Summ           | ary of Her                                                  | natology Valı  | ues: Day 57     |                  |                 |                |                 | Sof            |  |  |  |  |
| Group 1        | - Reference                                                 | Item           |                 |                  | Group 4 - 1     | mRNA-1647      | 89 μg/dose      | )*             |  |  |  |  |
|                |                                                             |                |                 |                  |                 |                | tie, o          |                |  |  |  |  |
| Group /<br>Sex |                                                             | WBC<br>10^3/uL | NEUT<br>10^3/uL | LYMPH<br>10^3/uL | MONO<br>10^3/uL | EOS<br>10^3/uL | BASO<br>10^3/uL | LUC<br>10^3/uL |  |  |  |  |
| lF             | Mean                                                        | 4.132          | 0.892           | 2.970            | 0.152           | 0.066          | 0.000           | 0.052          |  |  |  |  |
|                | SD                                                          | 1.035          | 0.265           | 0.905            | 0.063           | 0.011          | 0.000           | 0.029          |  |  |  |  |
|                | N                                                           | 5              | 5               | 5                | 5               | 36630U         | 5               | 5              |  |  |  |  |
| 4F             | Mean                                                        | 4.590          | 0.844           | 3.530            | 0.090           | 0.080          | 0.002           | 0.042          |  |  |  |  |
|                | SD                                                          | 1.866          | 0.606           | 1.391            | 0.056           | 0.027          | 0.004           | 0.022          |  |  |  |  |
|                | N                                                           | 5              | 5               | 5                | 113,420,10      | 5              | 5               | 5              |  |  |  |  |
|                | %Diff G1                                                    | 11.084         | -5.381          | 18.855           | -40.789         | 21.212         |                 | -19.231        |  |  |  |  |

Table 6 **Summary of Hematology Values: Day 57** 

| HGB<br>g/dL<br>12.60 |                  |                                                                |                                    | 10,00                                             |        |
|----------------------|------------------|----------------------------------------------------------------|------------------------------------|---------------------------------------------------|--------|
| g/dL                 | HCT              | MCV                                                            | MCH                                | MCHC                                              | RDW    |
| 12 60                |                  |                                                                | pg                                 | g/dL                                              | %      |
| 12 60                |                  |                                                                | \ \dagger_{\infty}                 | XO.                                               |        |
|                      | 37.38            | 53.92                                                          | 18.14                              | 33.64                                             | 11.48  |
| 0.58                 | 1.41             | 1.19                                                           | 0.61                               | 0.63                                              | 0.41   |
| 5                    | 5                | 5                                                              | 003                                | 5                                                 | 5      |
| 12.46                | 36.76            | fL(um3)  53.92 1.19 5  53.68 1.36 5 -0.45  L.c=p≤0.001 (T-test | pg  18.14 0.61 5 18.20 0.33 5 0.33 | 33.88                                             | 12.66b |
| 0.47                 | 1.30             | 1.36                                                           | 0.33                               | 0.54                                              | 0.47   |
| 5                    | 5                | (37:50,0                                                       | 5                                  | 5                                                 | 5      |
| -1.11                | -1.66            | -0.45 O                                                        | 0.33                               | 0.71                                              | 10.28  |
|                      | -10              | 10 20 10                                                       |                                    |                                                   |        |
| oup 1 value :a=      | -p≤0.05,b=p≤0.01 | l,c=p <u>≤</u> 0.001 (T-test                                   | :)                                 |                                                   |        |
| used to supp         | inger,           |                                                                |                                    |                                                   |        |
|                      |                  |                                                                |                                    |                                                   |        |
|                      |                  |                                                                |                                    | oup 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-test) |        |

|               | - <del>-</del>              |                            |                              | Natio                                                      |
|---------------|-----------------------------|----------------------------|------------------------------|------------------------------------------------------------|
| Sum:<br>Group | mary of He                  | ematology Val              | lues: Day 57                 | Group 4 - mRNA-1647 89 μg/dose                             |
| Group /       | /                           | PLT<br>10^3/uL             | RETIC<br>10^9/L              | - ad any export                                            |
| 1F            | Mean<br>SD<br>N             | 1044.0<br>139.5<br>5       | 163.78<br>16.45<br>5         | adjication are often                                       |
| 4F            | Mean<br>SD<br>N<br>%Diff G1 | 1105.2<br>80.9<br>5<br>5.9 | 169.54<br>21.05<br>5<br>3.52 | - a.e.lipopa.e.lipopalonon                                 |
|               |                             |                            |                              | Test Facility Study No. 50  Group 4 - mRNA-1647 89 μg/dose |
|               |                             |                            | dro supp                     | inder Re                                                   |
|               |                             | anoti                      | o Relegis                    |                                                            |
| 500203        | 4                           | Menticali                  |                              |                                                            |

Table 7 **Summary of Coagulation Values: Day 44** 

| Group /<br>Sex |          | PT<br>sec  | APTT<br>sec | FIB mg/dL  302.6 26.0 10  514.2c 36.4 10 69.9  576.2c 53.6 10 90.4 | Group 2 - 1<br>Group 4 - 1 |       |
|----------------|----------|------------|-------------|--------------------------------------------------------------------|----------------------------|-------|
| 1M             | Mean     | 17.61      | 15.50       | 302.6                                                              |                            |       |
|                | SD<br>N  | 0.86<br>10 | 0.75<br>10  | 26.0<br>10                                                         |                            | OPIIC |
| 2M             | Mean     | 17.55      | 16.21       | 514.2c                                                             | 7.61,100                   | .00,  |
|                | SD       | 0.54       | 0.77        | 36.4                                                               | ,08.63il                   |       |
|                | N        | 10         | 10          | 10                                                                 | an on on                   | ) -   |
|                | %Diff G1 | -0.34      | 4.58        | 69.9                                                               | is office to               |       |
| 3M             | Mean     | 17.51      | 17.62c      | 576.2c                                                             | 907                        |       |
|                | SD       | 0.74       | 0.69        | 53.6                                                               | (E)                        |       |
|                | N        | 10         | 10          | 10                                                                 |                            |       |
|                | %Diff G1 | -0.57      | 13.68       | 90.4                                                               |                            |       |
| 1M             | Mean     | 17.09      | 18.79c      | 645.70                                                             |                            |       |
|                | SD       | 1.15       | 1.07        | 56.6                                                               |                            |       |
|                | N        | 10         | 10          | 112.4                                                              |                            |       |
|                | %Diff G1 | -2.95      | 21.23       | 113.4                                                              |                            |       |

Table 7 **Summary of Coagulation Values: Day 44** 

| Group /<br>Sex | ,        | PT<br>sec | APTT<br>sec | FIB mg/dL  252.0 33.1 10  416.3c 50.2 10 65.2  473.7c 59.3 10 88.0  \$26.3c 73.5 |
|----------------|----------|-----------|-------------|----------------------------------------------------------------------------------|
| 1F             | Mean     | 17.13     | 14.97       | 252.0                                                                            |
|                | SD       | 0.76      | 1.58        | 33.1                                                                             |
|                | N        | 10        | 10          | 10                                                                               |
| 2F             | Mean     | 17.44     | 17.99c      | 416.3c                                                                           |
|                | SD       | 0.78      | 1.24        | 50.2                                                                             |
|                | N        | 10        | 10          | 10                                                                               |
|                | %Diff G1 | 1.81      | 20.17       | 65.2                                                                             |
| 3F             | Mean     | 16.70     | 17.80b      | 473.7c                                                                           |
|                | SD       | 0.95      | 2.09        | 59.3                                                                             |
|                | N        | 10        | 10          | 10                                                                               |
|                | %Diff G1 | -2.51     | 18.90       | 0.88                                                                             |
| 4F             | Mean     | 16.72     | 18.35c      | 526.36                                                                           |
|                | SD       | 0.63      | 1.41        | 73.5                                                                             |
|                | N        | 10        | 10          | × × 10                                                                           |
|                | %Diff G1 | -2.39     | 22.58       | 108.8                                                                            |

| Group 1 - Group / Sex | ry of Coa                   | gulation Val               | lues: Day 57                |                            |                                |                  | COLVO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Group 1 - Group / Sex | Reference I                 | tem                        | ides. Day 37                |                            |                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Group /<br>Sex        |                             |                            |                             |                            | Group 4 - mRNA-1647 89 μg/dose |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Group /<br>Sex        |                             |                            |                             |                            |                                |                  | eters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1M                    |                             | PT<br>sec                  | APTT sec                    | FIB<br>mg/dL               |                                | and and          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                       | Mean<br>SD<br>N             | 18.10<br>0.77<br>4         | 16.08<br>0.22<br>4          | 288.5<br>22.5<br>4         |                                | adjication septe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 4M                    | Mean<br>SD<br>N<br>%Diff G1 | 18.38<br>0.81<br>5<br>1.55 | 15.96<br>0.69<br>5<br>-0.72 | 274.4<br>11.5<br>5<br>-4.9 | eliopaen odolo                 | 00,01            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 5002034               | ر الم                       | nent camot '               | suppleased                  | ort any marke outation     |                                |                  | Test Facility Study Nose ose Norwalia in Maria i |  |  |

| Table 7        | 7                           |                            |                             |                            | Test Facility Study No. 500                                                                                                   |
|----------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Summ           | arv of Coa                  | gulation Va                | lues: Day 57                |                            | Of Jo                                                                                                                         |
| Group 1        | - Reference                 | Item                       | acor zaj c.                 |                            | Group 4 - mRNA-1647 89 μg/dose                                                                                                |
|                |                             |                            |                             |                            | et 2                                                                                                                          |
| Group /<br>Sex |                             | PT<br>sec                  | APTT<br>sec                 | FIB<br>mg/dL               | and amber 20                                                                                                                  |
| 1F             | Mean<br>SD<br>N             | 17.74<br>0.64<br>5         | 15.64<br>0.96<br>5          | 195.4<br>19.9<br>5         | adjication septie                                                                                                             |
| 4F             | Mean<br>SD<br>N<br>%Diff G1 | 17.98<br>1.00<br>5<br>1.35 | 15.00<br>1.08<br>5<br>-4.09 | 218.8<br>38.5<br>5<br>12.0 | Fe Test Facility Study No. 50  Group 4 - mRNA-1647 89 μg/dose  Group 4 - mRNA-1647 89 μg/dose  Group 4 - mRNA-1647 89 μg/dose |
|                |                             |                            |                             |                            | Sau 40                                                                                                                        |

Table 8 **Summary of Clinical Chemistry Values: Day 44** 

Group 2 - mRNA-1647 8.9  $\mu$ g/dose Group 4 - mRNA-1647 89 µg/dose

| Group /<br>Sex |          | AST   | ALT  | ALP                 | GGT                                   | CK      | TBIL   | UREAN |
|----------------|----------|-------|------|---------------------|---------------------------------------|---------|--------|-------|
| JOA            |          | U/L   | U/L  | U/L                 | U/L                                   | U/L     | mg/dL  | mg/dL |
| 1M             | Mean     | 99.8  | 40.0 | 113.1               | 2.0                                   | 560.1:0 | 0.069  | 13.2  |
| 1141           | SD       | 21.7  | 5.3  | 21.4                | 0.0                                   | 424.7   | 0.021  | 2.6   |
|                | N        | 10    | 10   | 10                  | 10                                    | 010     | 10     | 10    |
| 2M             | Mean     | 98.7  | 40.8 | 114.7               | 2.0<br>0.0<br>10<br>0.0<br>2.0<br>0.0 | 500.5   | 0.073  | 15.0  |
|                | SD       | 15.0  | 6.2  | 14.2                | 0.0                                   | 181.9   | 0.023  | 2.5   |
|                | N        | 10    | 10   | 10                  | J10 (1)                               | 10      | 10     | 10    |
|                | %Diff G1 | -1.1  | 2.0  | 1.4                 | 0.0                                   | -10.6   | 5.797  | 13.6  |
| 3M             | Mean     | 97.2  | 44.3 | 119.9               | 2,0                                   | 447.2   | 0.082  | 16.2a |
|                | SD       | 34.3  | 12.6 | 30.2                | 0.0                                   | 256.7   | 0.023  | 1.9   |
|                | N        | 10    | 10   | 10                  | 10                                    | 10      | 10     | 10    |
|                | %Diff G1 | -2.6  | 10.8 | 10<br>6.0 211       | 0.0                                   | -20.2   | 18.841 | 22.7  |
| 4M             | Mean     | 102.7 | 38.7 | 121.2               | 2.0                                   | 495.6   | 0.082  | 13.8  |
|                | SD       | 18.5  | 3.7  | 16.6                | 0.0                                   | 265.4   | 0.021  | 1.7   |
|                | N        | 10    | 10   | ₹ <mark>%</mark> 10 | 10                                    | 10      | 10     | 10    |
|                | %Diff G1 | 2.9   | -3.3 | 7.2                 | 0.0                                   | -11.5   | 18.841 | 4.5   |

Table 8 **Summary of Clinical Chemistry Values: Day 44** 

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 µg/dose

Group 3 - mRNA-1647 27 µg/dose

| Group /<br>Sex |          | CREAT | GLUC  | CHOL                       | TRIG                                              | TPROT | ALB    | GLOB  |
|----------------|----------|-------|-------|----------------------------|---------------------------------------------------|-------|--------|-------|
|                |          | mg/dL | mg/dL | mg/dL                      | mg/dL                                             | g/dL  | g/dL   | g/dL  |
| 1M             | Mean     | 0.34  | 188.2 | 68.1                       | 88.8                                              | 5.77  | 3.64   | 2.13  |
| 1141           | SD       | 0.05  | 29.0  | 16.2                       | 38.8                                              | 0.21  | 0.13   | 0.19  |
|                | N        | 10    | 10    | 10                         | 10                                                | 20    | 10     | 10    |
| 2M             | Mean     | 0.37  | 194.6 | 74.9                       | 70.6<br>38.1<br>10<br>-20.5<br>63.1<br>15.8<br>10 | 05.88 | 3.38c  | 2.50c |
|                | SD       | 0.05  | 44.0  | 17.1                       | 38.1                                              | 0.21  | 0.18   | 0.12  |
|                | N        | 10    | 10    | 10                         | (1) 10 (I) D                                      | 10    | 10     | 10    |
|                | %Diff G1 | 8.82  | 3.4   | 10.0                       | 38-1<br>10<br>-20.5                               | 1.91  | -7.14  | 17.37 |
| 3M             | Mean     | 0.39  | 197.6 | 75.5                       | 63,1                                              | 5.85  | 3.29c  | 2.56c |
|                | SD       | 0.06  | 30.7  | 8.8                        | 15.8                                              | 0.26  | 0.09   | 0.22  |
|                | N        | 10    | 10    | 10                         | 10                                                | 10    | 10     | 10    |
|                | %Diff G1 | 14.71 | 5.0   | 10<br>10.9<br>71.8<br>71.8 | -28.9                                             | 1.39  | -9.62  | 20.19 |
| 4M             | Mean     | 0.39  | 178.8 | 71.8                       | 68.7                                              | 5.94  | 3.27c  | 2.67c |
|                | SD       | 0.03  | 31.4  | 15.1                       | 24.2                                              | 0.26  | 0.15   | 0.20  |
|                | N        | 10    | 10    | <b>№10</b>                 | 10                                                | 10    | 10     | 10    |
|                | %Diff G1 | 14.71 | -5.0  | 5.4                        | -22.6                                             | 2.95  | -10.16 | 25.35 |

Table 8 **Summary of Clinical Chemistry Values: Day 44** 

Group 2 - mRNA-1647 8.9  $\mu$ g/dose Group 4 - mRNA-1647 89 µg/dose

| Group /<br>Sex |          | A/G    | CA    | PHOS  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K                | S. Car |
|----------------|----------|--------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|
|                |          | ratio  | mg/dL | mg/dL | mmol/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mmol/L           | mmol/L |
| 1M             | Mean     | 1.72   | 10.23 | 8.02  | 140.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.19             | 100.7  |
| 1141           | SD       | 0.18   | 0.30  | 0.81  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46             | 1.2    |
|                | N        | 10     | 10    | 10    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70               | 10     |
| 2M             | Mean     | 1.37c  | 10.20 | 7.80  | 139.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.49             | 100.1  |
|                | SD       | 0.11   | 0.29  | 0.45  | (1)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36             | 1.7    |
|                | N        | 10     | 10    | 10    | (1)10 (i) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>5)</sup> 10 | 10     |
|                | %Diff G1 | -20.35 | -0.29 | -2.74 | (A) - | 5.78             | -0.6   |
| 3M             | Mean     | 1.29c  | 10.42 | 7.96  | 139,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.67a            | 100.1  |
|                | SD       | 0.11   | 0.24  | 0.68  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.39             | 1.6    |
|                | N        | 10     | 10    | 10    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10               | 10     |
|                | %Diff G1 | -25.00 | 1.86  | -0.75 | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.25             | -0.6   |
| 4M             | Mean     | 1.22c  | 10.42 | 8.36  | 140.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.76b            | 100.4  |
|                | SD       | 0.11   | 0.40  | 0.71  | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21             | 1.4    |
|                | N        | 10     | 10    | 10    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10               | 10     |
|                | %Diff G1 | -29.07 | 1.86  | 4.24  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.98            | -0.3   |

Table 8 **Summary of Clinical Chemistry Values: Day 44** 

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 µg/dose

| Sex  |          | AST   | ALT   | ALP           | GGT      | CK    | TBIL   | UREAN |
|------|----------|-------|-------|---------------|----------|-------|--------|-------|
|      |          | U/L   | U/L   | U/L           | U/L      | U/L   | mg/dL  | mg/dL |
| 1F I | Mean     | 89.7  | 36.7  | 62.8          | 2.0      | 365.5 | 0.064  | 14.2  |
|      | SD       | 23.0  | 7.6   | 16.7          | 0.0      | 208.8 | 0.019  | 2.0   |
|      | N        | 10    | 10    | 10            | 10       | 3000  | 10     | 10    |
| 2F I | Mean     | 100.1 | 38.6  | 68.1          | 2.9 EV   | 427.6 | 0.077  | 15.5  |
|      | SD       | 25.8  | 8.6   | 11.6          | (0.0     | 243.6 | 0.018  | 3.0   |
| ]    | N        | 10    | 10    | 10            | J10 (1)  | x 10  | 10     | 10    |
| Ģ    | %Diff G1 | 11.6  | 5.2   | 8.4           | 7.0010.0 | 17.0  | 20.313 | 9.2   |
| 3F 1 | Mean     | 105.0 | 40.1  | 64.6          | 2.0      | 477.4 | 0.085  | 15.7  |
|      | SD       | 40.5  | 16.0  | 18.8          | 0.0      | 317.6 | 0.025  | 1.8   |
| ]    | N        | 10    | 10    | 10            | 10       | 10    | 10     | 10    |
| ç    | %Diff G1 | 17.1  | 9.3   | 10<br>2.9 all | 0.0      | 30.6  | 32.813 | 10.6  |
| 4F 1 | Mean     | 106.6 | 38.3  | 74.4          | 2.0      | 500.5 | 0.087  | 17.5a |
| 5    | SD       | 25.0  | 10.8  | 12.1          | 0.0      | 282.0 | 0.025  | 2.7   |
| ]    | N        | 10    | 10    | <b>0</b> 010  | 10       | 10    | 10     | 10    |
| Ç    | %Diff G1 | 18.8  | 4.4 5 | 18.5          | 0.0      | 36.9  | 35.938 | 23.2  |

Table 8
Summary of Clinical Chemistry Values: Day 44

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 μg/dose<sub>×</sub>

|             |          |       |       |          |           |       | or av  |       |
|-------------|----------|-------|-------|----------|-----------|-------|--------|-------|
| Group /     |          | CREAT | GLUC  | CHOL     | TRIG      | TPROT | ALB    | GLOB  |
| Sex         |          | mg/dL | mg/dL | mg/dL    | mg/dL     | g/dL  | g/dL   | g/dL  |
|             |          |       |       |          |           | 700   | ,0,0   |       |
| 1F          | Mean     | 0.42  | 209.9 | 82.2     | 79.8      | 6.51  | 4.54   | 1.97  |
|             | SD       | 0.04  | 37.4  | 13.1     | 62.9      | 0.41  | 0.27   | 0.18  |
|             | N        | 10    | 10    | 10       | 10        | 000   | 10     | 10    |
| <b>2</b> F  | Mean     | 0.40  | 192.0 | 88.1     | 47.3      | 6.32  | 4.02c  | 2.30c |
| 21          | SD       | 0.05  | 24.9  | 17.3     | A dillo   | 0.39  | 0.35   | 0.15  |
|             | N        | 10    | 10    | 10       | Ulo di A  | 10    | 10     | 10    |
|             | %Diff G1 | -4.76 | -8.5  | 7.2      | O -40.7   | -2.92 | -11.45 | 16.75 |
|             |          |       |       | ell      | . ~ \( \) |       |        |       |
| 3F          | Mean     | 0.42  | 181.3 | 85.5     | 57.7      | 6.40  | 4.07b  | 2.33c |
|             | SD       | 0.06  | 23.2  | 13.9     | 14.9      | 0.16  | 0.21   | 0.12  |
|             | N        | 10    | 10    | 10       | 10        | 10    | 10     | 10    |
|             | %Diff G1 | 0.00  | -13.6 | 4.0      | -27.7     | -1.69 | -10.35 | 18.27 |
| 4F          | Mean     | 0.45  | 182.3 | × 76.5 0 | 56.4      | 6.35  | 3.93c  | 2.42c |
| <b>4</b> T. | SD       | 0.05  | 20.2  | 15.2     | 17.2      | 0.22  | 0.24   | 0.15  |
|             | N        | 10    | 10    | 210      | 10        | 10    | 10     | 10    |
|             | %Diff G1 | 7.14  | -13.1 | -6.9     | -29.3     | -2.46 | -13.44 | 22.84 |
|             |          |       |       | J        |           |       |        |       |

Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Dunnett)

Table 8 **Summary of Clinical Chemistry Values: Day 44** 

Group 2 - mRNA-1647 8.9 μg/dose Group 4 - mRNA-1647 89 µg/dose

| Group / |          | A/G    | CA    | PHOS      | NA           | K                | Sall CE |
|---------|----------|--------|-------|-----------|--------------|------------------|---------|
| Sex     |          | ratio  | mg/dL | mg/dL     | mmol/L       | mmol/L           | mmol/L  |
| 1F      | Mean     | 2.32   | 10.82 | 6.59      | 139.6        | 4.76             | 101.2   |
|         | SD       | 0.17   | 0.24  | 0.82      | 1.4          | 0.21             | 1.6     |
|         | N        | 10     | 10    | 10        | 10           | 20               | 10      |
| 2F      | Mean     | 1.75c  | 10.65 | 6.90      | 140.2        | 4.99             | 101.8   |
|         | SD       | 0.18   | 0.39  | 0.71      | Al all       | 0.34             | 1.5     |
|         | N        | 10     | 10    | 10        | (1)10 (I) (A | <sup>20</sup> 10 | 10      |
|         | %Diff G1 | -24.57 | -1.57 | 4.70      | 0.4          | 4.83             | 0.6     |
| 3F      | Mean     | 1.76c  | 10.78 | 7.05      | 140,5        | 4.96             | 101.5   |
|         | SD       | 0.16   | 0.30  | 0.64      | 1.3          | 0.32             | 2.7     |
|         | N        | 10     | 10    | 10        | 10           | 10               | 10      |
|         | %Diff G1 | -24.14 | -0.37 | 6.98      | 0.6          | 4.20             | 0.3     |
| 4F      | Mean     | 1.64c  | 10.62 | 7.12      | 139.8        | 5.09             | 101.1   |
|         | SD       | 0.16   | 0.28  | 0.71      | 0.8          | 0.18             | 2.0     |
|         | N        | 10     | 10    | <b>10</b> | 10           | 10               | 10      |
|         | %Diff G1 | -29.31 | -1.85 | 8.04      | 0.1          | 6.93             | -0.1    |

Table 8 **Summary of Clinical Chemistry Values: Day 57** 

| Group / Sex         AST U/L         ALT ALP U/L         GGT U/L           1M Mean SD 11.5         97.8         40.5         120.0         2.0           SD 11.5         11.5         11.0         0.0 | CK<br>U/L<br>661.5<br>195.7<br>4<br>323.4a<br>119.2<br>5<br>-51.1 | TBIL<br>mg/dL<br>0.073 | UREAN<br>mg/dL |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|----------------|
| AST ALT ALP GGT U/L U/L U/L U/L  Mean 97.8 40.5 120.0 2.0                                                                                                                                             | CK<br>U/L<br>661.5                                                | mg/dL                  |                |
| 1M Mean 97.8 40.5 120.0 2.0                                                                                                                                                                           | 661.5<br>195.7                                                    | mg/dL<br>0.073         | mg/dL          |
| 1M Mean 97.8 40.5 120.0 2.0                                                                                                                                                                           | 661.5                                                             | 0.073                  |                |
| IM Mean 97.8 40.3 120.0 2.0                                                                                                                                                                           | 195.7                                                             | 0.5 0.073              | 17.0           |
|                                                                                                                                                                                                       | 195.77                                                            | 0.021                  |                |
| SD 11.5 11.5 11.0 0.0                                                                                                                                                                                 | C'/ 0'/                                                           | 0.021                  | 3.2            |
| N 4 4 4                                                                                                                                                                                               | 004                                                               | 4                      | 4              |
| N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                               | 323.4a                                                            | 0.064                  | 15.0           |
| SD 14.7 4.3 18.0 0.0                                                                                                                                                                                  | 119.2                                                             | 0.009                  | 2.9            |
| N 5 5 5 5                                                                                                                                                                                             | 5                                                                 | 5                      | 5              |
| %Diff G1 -21.0 0.7 -12.8                                                                                                                                                                              | -51.1                                                             | -11.724                | -11.8          |
| Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-te                                                                                                                 | est)                                                              |                        |                |
| Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-te                                                                                                                 |                                                                   |                        |                |
| amot be use leas                                                                                                                                                                                      |                                                                   |                        |                |
| Co.                                                                                                                                                                                                   |                                                                   |                        |                |
| 5002024                                                                                                                                                                                               |                                                                   |                        |                |
| JUU2UJ4                                                                                                                                                                                               |                                                                   |                        |                |
| 70 <sub>C</sub>                                                                                                                                                                                       |                                                                   |                        |                |
| . 50                                                                                                                                                                                                  |                                                                   |                        |                |
| This                                                                                                                                                                                                  |                                                                   |                        |                |
|                                                                                                                                                                                                       |                                                                   |                        |                |
|                                                                                                                                                                                                       |                                                                   |                        |                |

Table 8 **Summary of Clinical Chemistry Values: Day 57** 

| 3roup /    | ,                | CDEAT             | CLUC               | CHOL            | TDIC                                  | TDDOT                                      | W. I.  | GLOB   |
|------------|------------------|-------------------|--------------------|-----------------|---------------------------------------|--------------------------------------------|--------|--------|
| Sex        |                  | CREAT             | GLUC               | CHOL            | 1 KIG                                 | IPROI<br>_/at                              | Abb    |        |
|            |                  | mg/dL             | mg/dL              | mg/dL           | mg/aL                                 | g/aL                                       | S gran | g/dL   |
| 1 <b>M</b> | Mean             | 0.33              | 188.8              | 81.0            | mg/dL  107.8 34.2 4  98.2 33.1 3 -8.9 | 5.93                                       | 3.65   | 2.28   |
| 1141       | SD               | 0.05              | 23.2               | 16.1            | 34.2                                  | 0.15                                       | 0.10   | 0.10   |
|            | N                | 4                 | 4                  |                 | 4                                     | 1,00 V,2                                   | 4      | 4      |
|            |                  |                   |                    |                 |                                       | 20/06                                      |        |        |
| 4M         | Mean             | 0.34              | 260.2              | 65.8            | 98.2                                  | 5.62a                                      | 3.60   | 2.02b  |
|            | SD               | 0.05              | 62.8               | 7.9             | 33.1                                  | 0.13                                       | 0.10   | 0.08   |
|            | N                | 5                 | 5                  | 5               | 98.2 © U<br>33.10 3110<br>33.10 3110  | 5                                          | 5      | 5      |
|            | %Diff G1         | 4.62              | 37.9               |                 | 6.8°0, VOV                            | -5.15                                      | -1.37  | -11.21 |
|            |                  |                   |                    |                 | 3, 40                                 |                                            |        |        |
|            | icantiv differer | it trom control ( |                    |                 |                                       |                                            |        |        |
| Signif     | ,                | o nom condor g    | group 1 value :a=] | p≤0.05,b=p≤0.01 | ,c=p≤0,001 (T-tes                     | TPROT g/dL  5.93 0.15 4 5.62a 0.13 5 -5.15 |        |        |
| Signif     | ,                | w moni oonao i    | group I value :a=  | p<0.05,b=p<0.01 | c=p≤0,001 (T-tes                      | it.)                                       |        |        |

Table 8 **Summary of Clinical Chemistry Values: Day 57** 

|         | /           | A/G<br>ratio      | CA<br>mg/dL   | PHOS<br>mg/dL | NA<br>mmol/L                           | K<br>mmol/L                                    | CL/<br>mmol/L |
|---------|-------------|-------------------|---------------|---------------|----------------------------------------|------------------------------------------------|---------------|
| 1M      | Mean        | 1.60              | 10.45         | 7.05          | mmol/L  140.3 1.3 4  137.4a 1.5 5 -2.0 | 5.20<br>0.16<br>4<br>5.24<br>0.29<br>5<br>0.77 | 99.8          |
| 11/1    | SD          | 0.08              | 0.26          | 0.41          | 1.3                                    | 0.16                                           | 2.2           |
|         | N           | 4                 | 4             | 4             | 4                                      | 264 V.2                                        | 4             |
| 4M      | Mean        | 1.80a             | 10.50         | 7.60          | 137.4a                                 | 5.24                                           | 98.8          |
|         | SD          | 0.10              | 0.56          | 0.42          | 1.5° ×10°                              | 0.29                                           | 2.3           |
|         | N           | 5                 | 5             | 5             | 113,120,0                              | 5                                              | 5             |
|         | %Diff G1    | 12.50             | 0.48          | 7.80          | 13.57.50 VOK                           | 0.77                                           | -1.0          |
|         |             |                   |               | Maike         | on                                     |                                                |               |
|         |             |                   |               | Mailati       |                                        |                                                |               |
|         |             |                   |               | 31,30         |                                        |                                                |               |
|         |             |                   | (             | 16 500        |                                        |                                                |               |
|         |             |                   | 1100          | office s      |                                        |                                                |               |
|         |             |                   | 10 SUPP       | inder Res     |                                        |                                                |               |
|         |             |                   | sed to supply | inder Res     |                                        |                                                |               |
|         |             | ~                 | e Jeglenegel  | inger been    |                                        |                                                |               |
|         |             | o <sup>t</sup> .V | e Released    | inder Res     |                                        |                                                |               |
|         |             | annotic           | e Leleuzell   | inger been    |                                        |                                                |               |
|         |             | at cannot b       | e Released    | inder Res     |                                        |                                                |               |
| 5002034 | 4           | nent camot b      | e Leglegeed   | inger been    |                                        |                                                |               |
| 5002034 | 4<br>       | ment cannot 's    | se Released   | inder Res     |                                        |                                                |               |
| 5002034 | 4 :5 docu   | nent camot b      | e zeleasedi   | inder Peo     |                                        |                                                |               |
| 5002034 | 4 This docu | nerit cannot v    | e Released    | on Person     | ,c=p≤0,001 (T-test                     |                                                |               |

Table 8 **Summary of Clinical Chemistry Values: Day 57** 

| U/L         U/L         U/L         U/L         U/L         U/L         U/L         U/L         U/L         mg/dL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |       |         |              |             |        | et (1)  | •        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|-------|---------|--------------|-------------|--------|---------|----------|
| U/L         U/L         U/L         U/L         U/L         U/L         mg/dL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _      | /    | A COT | A.T. 75 | ATD          | COT         | CIZ    | 2       | IIDI 434 |
| 1F Mean 104.0 44.0 58.8 2.0 644.2 0.068 19.0 SD 14.5 7.5 10.9 0.0 186.0 0.016 3.0 N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sex    |      |       |         |              | GGT         | CK     | TBIL    | UREAN    |
| IF Mean 104.0 44.0 58.8 2.0 644.2 0.068 19.0 SD 14.5 7.5 10.9 0.0 186.0 0.016 3. N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      | U/L   | U/L     | U/L          | U/L         | U/L    | mg/dL   | mg/dL    |
| SD 14.5 7.5 10.9 0.0 186.1 0.016 3.  N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Maon | 104.0 | 44.0    | 50 0         | 2.0         | 644.2  | 0 068   | 10.6     |
| N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF     |      |       |         |              | 2.0         | 196.4  | 0.006   |          |
| 4F Mean 78.4b 36.4 74.2 2.0 213.0b 0.052 19.4 SD 5.0 4.4 21.1 0.0 64.2 0.013 2.1 N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |      |       |         |              | 0.0         | 100.10 | 0.010   |          |
| 4F Mean 78.4b 36.4 74.2 2.0 213.0b 0.052 19.0 SD 5.0 4.4 21.1 0.0 64.2 0.013 2. N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | N    | 3     | 3       | 3            | 3           | 0620   | 3       | 3        |
| SD 5.0 4.4 21.1 0.0 64.2 0.013 2.1 N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1E     | Mean | 78 4h | 36.4    | 74.2         | 2000        | 213.0h | 0.052   | 19.0     |
| N 5 5 5 5 5 5 5 5 9/Diff G1 -24.6 -17.3 26.2 0.0 -66.9 -23.529 -3.  Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.    |      |       |         |              | 0.0         | 64.2   | 0.013   | 2.7      |
| %Diff G1 -24.6 -17.3 26.2 0.00 -66.9 -23.529 -3.  Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |      |       |         |              | (97,18)     | 5      | 5       |          |
| Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,a=p≤0.001 (T-test)  Significantly different from control group 1 value :a=p≤0.05,b=p≤0.001 (T-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |      |       |         |              | Chianilo Op | -66.9  | -23 529 | -3.1     |
| Significantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (T-test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |       |         |              | 10. 111. V. |        |         |          |
| 5002034  This document cannot be used to support any part of the used to support any part of t |        |      |       |         | Mark         | on          |        |         |          |
| 5002034 This document cannot be used to support and the support of |        |      |       |         | " SULY COLLE |             |        |         |          |
| 5002034  This document cannot be used to supply the supply of the supply |        |      |       |         | or Ro        |             |        |         |          |
| 5002034  This document calmot the used to set time  This document calmot the used time  This document calmot time  T |        |      |       | 191     | 5,76,        |             |        |         |          |
| 5002034 This document cannot be used to be a seed to be a |        |      |       | S       | TUC          |             |        |         |          |
| 5002034  This document cannot be used by the like of t |        |      |       | 7,000   |              |             |        |         |          |
| 5002034  This document cannot be size all a second of the size all a se |        |      |       | SOUNE   |              |             |        |         |          |
| 5002034 This document cannot be the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |      |       | 0 000   |              |             |        |         |          |
| 5002034 This document canno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      | i.    | D. K.   |              |             |        |         |          |
| 5002034 This document call.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |      | MO    |         |              |             |        |         |          |
| 5002034 This document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |      | Call  |         |              |             |        |         |          |
| 5002034  This docume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |      | ani   |         |              |             |        |         |          |
| This docu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500203 | 4    | ine   |         |              |             |        |         |          |
| This do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | C    | >,    |         |              |             |        |         |          |
| This                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | 90   |       |         |              |             |        |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Mis  |       |         |              |             |        |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |       |         |              |             |        |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |      |       |         |              |             |        |         |          |

Table 8 **Summary of Clinical Chemistry Values: Day 57** 

|                 |                                        |                                                                 |                                                                                                                                                         |                                                                                                                                                                         |                                                              | 40,201                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|----------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | CREAT                                  | GLUC                                                            | CHOL                                                                                                                                                    | TRIG                                                                                                                                                                    | TPROT                                                        | ALB                                                                                                                                                                                                                                       | GLOB                                                                                                                                                                                                                                                                                                                                            |
|                 | mg/dL                                  | mg/dL                                                           | mg/dL                                                                                                                                                   | mg/dL                                                                                                                                                                   | g/dL                                                         | g/dL                                                                                                                                                                                                                                      | g/dL                                                                                                                                                                                                                                                                                                                                            |
| Mean            | 0.44                                   | 195.2                                                           | 82.4                                                                                                                                                    | 135.2                                                                                                                                                                   | 6.52                                                         | 4 68                                                                                                                                                                                                                                      | 1.84                                                                                                                                                                                                                                                                                                                                            |
|                 |                                        |                                                                 | 21.8                                                                                                                                                    | 45 7                                                                                                                                                                    | 0.52                                                         | 0.11                                                                                                                                                                                                                                      | 0.13                                                                                                                                                                                                                                                                                                                                            |
|                 |                                        |                                                                 | 5                                                                                                                                                       | 5                                                                                                                                                                       | 130 V3                                                       | 5                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                               |
|                 |                                        |                                                                 |                                                                                                                                                         |                                                                                                                                                                         | 20/01                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
| Mean            | 0.42                                   | 182.2                                                           | 65.6                                                                                                                                                    | 59.4a                                                                                                                                                                   | 6.12                                                         | 4.30a                                                                                                                                                                                                                                     | 1.82                                                                                                                                                                                                                                                                                                                                            |
|                 | 0.04                                   | 38.5                                                            | 8.7                                                                                                                                                     | 3.0                                                                                                                                                                     | 0.41                                                         | 0.30                                                                                                                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                            |
|                 | 5                                      | 5                                                               | 5                                                                                                                                                       | 11/3, 1/20                                                                                                                                                              | 5                                                            | 5                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                               |
| %Diff G1        | -4.55                                  | -6.7                                                            | -20.4                                                                                                                                                   | -56.P                                                                                                                                                                   | -6.13                                                        | -8.12                                                                                                                                                                                                                                     | -1.09                                                                                                                                                                                                                                                                                                                                           |
| cantly differer | nt from control g                      | group 1 value :a=r                                              | o≤0.05,b=p≤0.01                                                                                                                                         | ,c=p≤0,001 (Wilc                                                                                                                                                        | oxon)                                                        |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|                 | *~                                     | se religion supp                                                | inder                                                                                                                                                   |                                                                                                                                                                         |                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|                 | Carinot                                |                                                                 |                                                                                                                                                         |                                                                                                                                                                         |                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                 |
|                 | SD<br>N<br>Mean<br>SD<br>N<br>%Diff G1 | SD 0.05<br>N 5<br>Mean 0.42<br>SD 0.04<br>N 5<br>%Diff G1 -4.55 | SD     0.05     27.5       N     5     5       Mean     0.42     182.2       SD     0.04     38.5       N     5     5       %Diff G1     -4.55     -6.7 | SD 0.05 27.5 21.8 N 5 5 5  Mean 0.42 182.2 65.6 SD 0.04 38.5 8.7 N 5 5 5 5 90 Moiff G1 -4.55 -6.7 -20.4  cantly different from control group 1 value :a=p≤0.05,b=p≤0.01 | SD 0.05 27.5 21.8 45.7 N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | SD 0.05 27.5 21.8 45.7 0.15 N 5 5 5 5 5  Mean 0.42 182.2 65.6 59.4a 6.12 SD 0.04 38.5 8.7 3.9 0.41 N 5 5 5 5  **Wolff G1 4.55 -6.7 -20.4 -56.0 -6.13  cantly different from control group 1 value :a=p≤0.05,b=p≤0.01,c=p≤0.001 (Wilcoxon) | SD     0.05     27.5     21.8     45.7     0.15     0.11       N     5     5     5     5     5       Mean     0.42     182.2     65.6     59.4a     6.12     4.30a       SD     0.04     38.5     8.7     3.0     0.41     0.30       N     5     5     5     5     5       %Diff G1     -4.55     -6.7     -20.4     -56.1     -6.13     -8.12 |

Table 8
Summary of Clinical Chemistry Values: Day 57

Group 4 - mRNA-1647 89 µg/dose

| Group | /        |       |       |       |              |        | 76.50  |
|-------|----------|-------|-------|-------|--------------|--------|--------|
| Sex   |          | A/G   | CA    | PHOS  | NA           | K      | CL     |
|       |          | ratio | mg/dL | mg/dL | mmol/L       | mmol/L | mmol/L |
|       |          |       |       |       |              |        | D, 10, |
| 1F    | Mean     | 2.54  | 10.90 | 5.82  | 138.8        | 4.64   | 100.4  |
|       | SD       | 0.21  | 0.29  | 0.83  | 1.3          | 0.23   | 1.5    |
|       | N        | 5     | 5     | 5     | 5            | 35     | 5      |
|       |          |       |       |       |              | 26 OL  |        |
| 4F    | Mean     | 2.36  | 10.56 | 6.56  | 138.0        | 4.58   | 100.2  |
|       | SD       | 0.15  | 0.42  | 1.10  | 100          | 0.31   | 1.6    |
|       | N        | 5     | 5     | 5     | 113, 120, 10 | 5      | 5      |
|       | %Diff G1 | -7.09 | -3.12 | 12.71 | 68 ON        | -1.29  | -0.2   |

Table 9 Summary of a1-acid Glycoprotein and a2-macroglobulin Values

Day 44 Males

Group 1 - Reference Item

Group 3 - mRNA-1647 27 μg/dose

Group 2 - mRNA-1647 8.9 μg/dose

Group 4 - mRNA-1647 89 µg/dose

|       | Summary     | α1-acid Glycoprotein              | α2-macroglobulin |
|-------|-------------|-----------------------------------|------------------|
| Group | Information | μg/mL                             | μg/mL            |
|       |             |                                   | 22.505           |
| 1     | Mean        | 94.060                            | 23.306           |
|       | SD          | 29.429                            | 12.169           |
|       | N           | 10                                | 102.             |
|       |             |                                   | 100; 150° 01' L  |
| 2     | Mean        | 257.432 C                         | 105.194          |
|       | SD          | 43.395                            | 68.816           |
|       | N           | 10                                | 0,00,10          |
|       | % Diff (G1) | 174                               | Ail ( 390        |
|       |             |                                   | aik ar           |
| 3     | Mean        | 390.988 C                         | 293.504 F        |
|       | SD          | 56.379                            | 237.643          |
|       | N           | 10                                | 10               |
|       | % Diff (G1) | 316                               | 1149             |
|       |             | 316                               |                  |
| 4     | Mean        | 551.569 C                         | 382.531 F        |
|       | SD          | 551.569 C<br>151.980<br>10<br>486 | 211.063          |
|       | N           | 10                                | 10               |
|       | % Diff (G1) | 486                               | 1527             |

Significantly different from control group (Group 1) value:  $A - P \le 0.05 \ B - P \le 0.01 \ C - P \le 0.001 \ (Dunnett)$   $D - P \le 0.05 \ E - P \le 0.01 \ F - P \le 0.001 \ (Dunn)$ 

Table 9 Summary of a1-acid Glycoprotein and a2-macroglobulin Values

Day 44 Females

Group 1 - Reference Item

Group 3 - mRNA-1647 27 μg/dose

Group 2 - mRNA-1647 8.9 μg/dose

Group 4 - mRNA-1647 89 μg/dose

|       | Summary        | α1-acid Glycoprotein | α2-macroglobulin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------|----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Groun | Information    | · -                  | μg/mL sight and the second se |  |
| Group | Illioilliation | μg/mL                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 1     | Mean           | 72.220               | 42.357 adjica 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| _     | SD             | 24.521               | 20.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|       | N              | 10                   | 102.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|       |                |                      | 1108; 15at 01/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 2     | Mean           | 235.634 C            | 55.994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|       | SD             | 52.630               | 15,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|       | N              | 10                   | 0,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|       | % Diff (G1)    | 226                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       |                |                      | all all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 3     | Mean           | 339.454 C            | 123.631 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | SD             | 50.928               | 113.492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|       | N              | 10                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | % Diff (G1)    | 370                  | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       |                | SULINO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 4     | Mean           | 505.421 C            | 186.357 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|       | SD             | 137,000              | 249.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|       | N              | 10                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|       | % Diff (G1)    | 600                  | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|       |                | 20                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

Significantly different from control group (Group 1) value:  $A - P \le 0.05 \ B - P \le 0.01 \ C - P \le 0.001$  (Dunnett)  $D - P \le 0.05 \ E - P \le 0.01 \ F - P \le 0.001 \ (Dunn)$ 

Table 9 Summary of a1-acid Glycoprotein and a2-macroglobulin Values

Day 57 Males

Group 1 - Reference Item

Group 3 - mRNA-1647 27 μg/dose

Group 2 - mRNA-1647 8.9 μg/dose

|       | Summary     | α1-acid Glycoprotein      | α2-macroglobulin μg/mL  20.773 4.717  37.996 a 12.667 5 83                                                                                                                                         |  |
|-------|-------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Group | Information | μg/mL                     | μg/mL                                                                                                                                                                                              |  |
|       |             |                           |                                                                                                                                                                                                    |  |
| 1     | Mean        | 88.440                    | 20.773                                                                                                                                                                                             |  |
|       | SD          | 8.092                     | 4.717                                                                                                                                                                                              |  |
|       | N           | 4                         | 0. 1/10,000                                                                                                                                                                                        |  |
|       |             |                           | 110 tisio 101 h                                                                                                                                                                                    |  |
| 4     | Mean        | 87.166                    | 37.996 a                                                                                                                                                                                           |  |
|       | SD          | 12.415                    | 12.667                                                                                                                                                                                             |  |
|       | N           | 5                         |                                                                                                                                                                                                    |  |
|       | % Diff (G1) | -1                        | 83                                                                                                                                                                                                 |  |
|       |             |                           |                                                                                                                                                                                                    |  |
|       |             | SUPPORT                   | $d - P \le 0.05 \text{ e} - P \le 0.01 \text{ f} - P \le 0.001 \text{ (Wilcoxon)}$                                                                                                                 |  |
|       |             | ot be Ised to support     | d-P≥0.05 e-P≤0.01 f-P≤0.001 (Wilcoxon)                                                                                                                                                             |  |
|       | cument      | cannot be used to support | 37.996 a 12.667 5 83 E: $a - P \le 0.05 \text{ b} - P \le 0.01 \text{ c} - P \le 0.001 \text{ (}t\text{-test)}$ $d - P \ge 0.05 \text{ e} - P \le 0.01 \text{ f} - P \le 0.001 \text{ (Wilcoxon)}$ |  |

Table 9 Summary of a1-acid Glycoprotein and a2-macroglobulin Values

Day 57 Females

Group 1 - Reference Item

Group 3 - mRNA-1647 27 μg/dose

Group 2 - mRNA-1647 8.9 μg/dose

|           | Summary              | α1-acid Glycoprotein          | α2-macroglobulin μg/mL  35.152 13.723 54.802 38.529 5 56                                                                                                                                                                          |  |
|-----------|----------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Group     | Information          | μg/mL                         | μg/mL                                                                                                                                                                                                                             |  |
|           |                      |                               | 1100 N3                                                                                                                                                                                                                           |  |
| 1         | Mean                 | 68.932                        | 35.152                                                                                                                                                                                                                            |  |
|           | SD                   | 4.834                         | 13.723                                                                                                                                                                                                                            |  |
|           | N                    | 5                             | 3. 2/10, 100                                                                                                                                                                                                                      |  |
|           |                      |                               | 1104,150,191                                                                                                                                                                                                                      |  |
| 4         | Mean                 | 75.622                        | .54,802                                                                                                                                                                                                                           |  |
|           | SD                   | 10.977                        | 38.529                                                                                                                                                                                                                            |  |
|           | N                    | 5                             |                                                                                                                                                                                                                                   |  |
|           | % Diff (G1)          | 10                            | 56                                                                                                                                                                                                                                |  |
|           |                      |                               | all on                                                                                                                                                                                                                            |  |
| Significa | antly different from | control group (Group 1) value | a: $a - P \le 0.05$ b $- P \le 0.01$ c $- P \le 0.001$ (t-test)<br>d $- P \le 0.05$ e $- P \le 0.01$ f $- P \le 0.001$ (Wilcoxon)                                                                                                 |  |
| Significa | antly different from | control group (Group 1) value | $\begin{array}{c} 54.802 \\ 38.529 \\ 56 \\ \\ \text{aP} \le 0.05 \text{ bP} \le 0.01 \text{ cP} \le 0.001 \text{ (}t\text{-test)} \\ \text{dP} \ge 0.05 \text{ eP} \le 0.01 \text{ fP} \le 0.001 \text{ (Wilcoxon)} \end{array}$ |  |

Table 10 **Summary of Cytokine Values** 

IL-1 $\beta$  (pg/mL) Males

Group 1 - Reference Item

|       | Summary     |                        |                                                                                                 | Day                                            | NO.               |        |
|-------|-------------|------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------|--------|
| Group | Information | 1 - 6 h Post Dose      | 15 - 6 h Post Dose                                                                              | 29 - 6 h Post Dose 4                           | 3 - 6 h Post Dose | 5′     |
|       |             |                        |                                                                                                 | atio, Sex                                      |                   |        |
| 1     | Mean        | 81.768                 | 21.700                                                                                          | 59.374                                         | 124.482           | 51.91  |
|       | SD          | 151.835                | 24.183                                                                                          | 88.301                                         | 265.269           | 92.12  |
|       | N           | 4                      | 5                                                                                               | 5                                              | 5                 | 4      |
|       |             |                        | 200                                                                                             | 59.374<br>88.301<br>5<br>58.726<br>80.621<br>5 |                   |        |
| 4     | Mean        | 58.354                 | 44.110                                                                                          | 58.726                                         | 39.250            | 15.06  |
|       | SD          | 52.019                 | 36.995                                                                                          | 80.621                                         | 48.320            | 20.612 |
|       | N           | 5                      | BU 312 40                                                                                       | 5                                              | 5                 | :      |
|       | % Diff (G1) | -29                    | 103                                                                                             | -1                                             | -68               | -7     |
|       |             |                        | To. K                                                                                           |                                                |                   |        |
|       |             | iopor                  | 6-1-3003 6-1-30.01                                                                              | - 1 _ 0.001 ( <del></del>                      |                   |        |
|       |             | not be used to support | $44.110$ $36.995$ $103$ He: $a - P \le 0.05$ b $- P \le 0.01$ d $- P \le 0.05$ e $- P \le 0.01$ |                                                |                   |        |

Table 10 **Summary of Cytokine Values** 

IL-6 (pg/mL) Males

Group 1 - Reference Item

|       | Summary     |                        |                    | Day                                                                                            | Up                |         |
|-------|-------------|------------------------|--------------------|------------------------------------------------------------------------------------------------|-------------------|---------|
| Group | Information | 1 - 6 h Post Dose      | 15 - 6 h Post Dose | 29 - 6 h Post Dose 43                                                                          | 3 - 6 h Post Dose | 57      |
|       |             |                        |                    | atio, esp                                                                                      |                   |         |
| 1     | Mean        | 176.000                | 176.000            | 176.000                                                                                        | 176.000           | 176.000 |
|       | SD          | 0.000                  | 0.000              | 0.000                                                                                          | 0.000             | 0.000   |
|       | N           | 4                      | 5                  | 29 - 6 h Post Dose 4.  176.000 0.000 5  176.000 0.000 5 01 c - P $\leq$ 0.001 (t-test)         | 5                 | 4       |
|       |             | 4=4000                 | 1-1000             | cation 20                                                                                      | 4=4000            | 4=4.000 |
| 4     | Mean        | 176.000                | 176.000            | 176.000                                                                                        | 176.000           | 176.000 |
|       | SD          | 0.000                  | 0.000              | 0.000                                                                                          | 0.000             | 0.000   |
|       | N           | 5                      | 01, 0,2 4          | 5                                                                                              | 5                 | 5       |
|       | % Diff (G1) | 0                      | ding of            | 0                                                                                              | 0                 | 0       |
|       |             | 2                      | 100 C-1 30.        | or 1-1 30.001 (wheeker)                                                                        |                   |         |
|       | ournant car | not be used to support | der Redy C-1 So.   | 176.000<br>0.000<br>5<br>0<br>01 $c - P \le 0.001$ (t-test)<br>01 $f - P \le 0.001$ (Wilcoxon) |                   |         |

Table 10 **Summary of Cytokine Values** 

TNF- $\alpha$  (pg/mL) Males

Group 1 - Reference Item

|       | Summary     |                        |                                                                                           | Day                                                             | (O                |      |
|-------|-------------|------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|------|
| Group | Information | 1 - 6 h Post Dose      | 15 - 6 h Post Dose                                                                        | 29 - 6 h Post Dose 43                                           | 3 - 6 h Post Dose | 5′   |
|       |             |                        |                                                                                           | ijo, cek                                                        |                   |      |
| 1     | Mean        | 1.470                  | 2.534                                                                                     | 1.470                                                           | 2.450             | 3.09 |
|       | SD          | 0.000                  | 2.379                                                                                     | 0.000                                                           | 2.191             | 3.25 |
|       | N           | 4                      | 5                                                                                         | 29 - 6 h Post Dose 43<br>0.000<br>5<br>1.470<br>0.000<br>5<br>0 | 5                 | 4    |
|       |             |                        |                                                                                           | 110,000                                                         |                   |      |
| 4     | Mean        | 1.470                  | 3.648                                                                                     | 1.470                                                           | 3.746             | 1.47 |
|       | SD          | 0.000                  | 3.010                                                                                     | 0.000                                                           | 3.170             | 0.00 |
|       | N           | 5                      | en 315 40                                                                                 | 5                                                               | 5                 | :    |
|       | % Diff (G1) | 0                      | xi(10) 44)                                                                                | 0                                                               | 53                | -5:  |
|       |             |                        | No. K                                                                                     |                                                                 |                   |      |
|       |             | , ippor                | d-P≤0.05 e-P≤0.01                                                                         | f - P ≤ 0.001 (Wilcoxon)                                        |                   |      |
|       |             | not be used to support | 3.648 3.010 5 44  ae: $a - P \le 0.05 \ b - P \le 0.01$ $d - P \le 0.05 \ e - P \le 0.01$ | f - P ≤ 0.001 (Wilcoxon)                                        |                   |      |

Table 10 **Summary of Cytokine Values** 

IP-10 (pg/mL) Males

Group 1 - Reference Item

|           | Summary                |                           |                                                                           | Day                                                                  |                    |        |
|-----------|------------------------|---------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|--------|
| Group     | Information            | 1 - 6 h Post Dose         | 15 - 6 h Post Dose                                                        | 29 - 6 h Post Dose                                                   | 43 - 6 h Post Dose | 5      |
|           |                        |                           |                                                                           | . 0, 6,4                                                             |                    |        |
| 1         | Mean                   | 119.183                   | 81.600                                                                    | 108.196                                                              | 114.608            | 111.97 |
|           | SD                     | 55.636                    | 18.170                                                                    | 42.739                                                               | 70.494             | 79.73  |
|           | N                      | 4                         | 18.170<br>5<br>882.356 d<br>311.841                                       | 993.816 b<br>523.188<br>5                                            | 5                  |        |
|           |                        |                           | , Q'a'                                                                    | 3110 1200                                                            |                    |        |
| 4         | Mean                   | 1215.712 b                | 882.356 d                                                                 | 993.816 b                                                            | 667.464 c          | 70.60  |
|           | SD                     | 481.589                   | 311.841                                                                   | 523.188                                                              | 176.698            | 19.92  |
|           | N                      | 5                         | OL, 02, 40                                                                | 5                                                                    | 5                  | :      |
|           | % Diff (G1)            | 920                       | 981                                                                       | 819                                                                  | 482                | -3     |
|           |                        |                           | Yer K                                                                     |                                                                      |                    |        |
| Significa | ntly different from co | ontrol group (Group 1) va | lue: $a - P \le 0.05$ $b - P \le 0.0$<br>$d - P \le 0.05$ $e - P \le 0.0$ | 1 c - P ≤ 0.001 ( <i>t</i> -test)<br>1 f - P ≤ 0.001 (Wilcoxon)      |                    |        |
| Significa | ntly different from co | ontrol group (Group 1) va | lue: $a - P \le 0.05$ $b - P \le 0.0$<br>$d - P \le 0.05$ $e - P \le 0.0$ | 993.816 b 523.188 5 819  1 c-P≤0.001 (t-test) 1 f-P≤0.001 (Wilcoxon) |                    |        |

Table 10 **Summary of Cytokine Values** 

MIP-1- $\alpha$  (pg/mL) Males

Group 1 - Reference Item

|       |             |                       |                    | . 0 .                                                                                      |                   |      |
|-------|-------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------|-------------------|------|
|       | Summary     |                       |                    | Day                                                                                        | D                 |      |
| Group | Information | 1 - 6 h Post Dose     | 15 - 6 h Post Dose | 29 - 6 h Post Dose 43                                                                      | 3 - 6 h Post Dose | 5    |
|       |             |                       |                    | atio, 20th                                                                                 |                   |      |
| 1     | Mean        | 5.850                 | 5.850              | 5.850                                                                                      | 5.850             | 5.85 |
|       | SD          | 0.000                 | 0.000              | 0.000                                                                                      | 0.000             | 0.00 |
|       | N           | 4                     | 5                  | 5.850<br>0.000<br>5<br>5.850<br>0.000<br>5<br>0                                            | 5                 | •    |
|       |             |                       | 000                | atio 200                                                                                   |                   |      |
| 4     | Mean        | 5.850                 | 9.986              | 5.850                                                                                      | 5.850             | 5.85 |
|       | SD          | 0.000                 | 9.248              | 0.000                                                                                      | 0.000             | 0.00 |
|       | N           | 5                     | 6/1/201/70         | 5                                                                                          | 5                 | ;    |
|       | % Diff (G1) | 0                     | in 71              | 0                                                                                          | 0                 | 1    |
|       |             |                       | 16, K              |                                                                                            |                   |      |
|       |             | . 100                 | Set ,              |                                                                                            |                   |      |
|       | a di Co     | inothe used to supply | nde <sup>t</sup>   | 5.850<br>0.000<br>5<br>0<br>01 c-P $\leq$ 0.001 (t-test)<br>01 f-P $\leq$ 0.001 (Wilcoxon) |                   |      |

Table 10 **Summary of Cytokine Values** 

MCP-1 (pg/mL) Males

Group 1 - Reference Item

|       | Summary     |                       |                                                                                            | Day                                               | NO.                |         |
|-------|-------------|-----------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------|---------|
| Group | Information | 1 - 6 h Post Dose     | 15 - 6 h Post Dose                                                                         | 29 - 6 h Post Dose                                | 43 - 6 h Post Dose | 57      |
|       |             |                       |                                                                                            | *10, COX                                          |                    |         |
| 1     | Mean        | 385.368               | 407.454                                                                                    | 387.200                                           | 352.102            | 209.503 |
|       | SD          | 84.450                | 64.383                                                                                     | 87.399                                            | 29.006             | 161.154 |
|       | N           | 4                     | 649.598<br>337.498                                                                         | 387.200<br>87.399<br>5<br>563.292<br>151.572<br>5 | 5                  | 4       |
| 4     | Mean        | 531.784               | 649.598                                                                                    | 563.292                                           | 484.526            | 166.148 |
|       | SD          | 127.495               | 337,498                                                                                    | 151.572                                           | 283.312            | 130.973 |
|       | N           | 5                     | allie april                                                                                | 5                                                 | 5                  | 5       |
|       | % Diff (G1) | 38                    | 59                                                                                         | 45                                                | 38                 | -21     |
|       |             |                       | Yer K                                                                                      |                                                   |                    |         |
|       |             | ,,199                 | of Reduced                                                                                 |                                                   |                    |         |
|       |             | not be used to supply | 649.598 337.498 59 alue: $a - P \le 0.05$ b $- P \le 0.0$ d $- P \le 0.05$ e $- P \le 0.0$ |                                                   |                    |         |

Table 10 **Summary of Cytokine Values** 

IL-1 $\beta$  (pg/mL) Females

Group 1 - Reference Item

|           | ~                     |                           |                                       |                                                                                  | ~ <del>0</del> .  |        |
|-----------|-----------------------|---------------------------|---------------------------------------|----------------------------------------------------------------------------------|-------------------|--------|
| _         | Summary               | 4 44 5 5                  | 4.5 44.5 5                            | Day                                                                              | 3 - 6 h Post Dose |        |
| Group     | Information           | 1 - 6 h Post Dose         | 15 - 6 h Post Dose                    | 29 - 6 h Post Dose 43                                                            | 5 - 6 h Post Dose | 5′     |
|           |                       |                           |                                       | alio so                                                                          |                   |        |
| 1         | Mean                  | 81.260                    | 81.770                                | 24.666                                                                           | 51.744            | 14.792 |
|           | SD                    | 67.051                    | 93.939                                | 29.166                                                                           | 52.373            | 12.313 |
|           | N                     | 4                         | 25.974<br>44.999                      | 24.666<br>29.166<br>5<br>15.594<br>21.788<br>5                                   | 5                 | 4      |
|           |                       |                           | .000                                  | 2110/200                                                                         |                   |        |
| 4         | Mean                  | 25.924                    | 25.974                                | 15.594                                                                           | 23.160            | 9.680  |
|           | SD                    | 44.887                    | 44.999                                | 21.788                                                                           | 38.706            | 8.56   |
|           | N                     | 5                         | OL, 32, 40                            | 5                                                                                | 5                 | :      |
|           | % Diff (G1)           | -68                       | -68                                   | -37                                                                              | -55               | -3:    |
| Significa | ntly different from c | ontrol group (Group 1) va | llue: $a - P \le 0.05 b - P \le 0.05$ | $0.01 \text{ c} - P \le 0.001 \text{ (}t\text{-test)}$                           |                   |        |
|           |                       | SUPP                      | del                                   |                                                                                  |                   |        |
|           | S                     | amot be leged to sed i    |                                       | 15.594 21.788 5 -37  01 c-P $\leq$ 0.001 (t-test) 01 f-P $\leq$ 0.001 (Wilcoxon) |                   |        |

Table 10 **Summary of Cytokine Values** 

IL-6 (pg/mL) Females

Group 1 - Reference Item

|           | Summary                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Day                                                                                                                       | No.               |         |
|-----------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|---------|
| Group     | Information            | 1 - 6 h Post Dose         | 15 - 6 h Post Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 - 6 h Post Dose                                                                                                        | 3 - 6 h Post Dose | 57      |
|           |                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | atilo So,                                                                                                                 |                   |         |
| 1         | Mean                   | 176.000                   | 176.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 176.000                                                                                                                   | 176.000           | 176.000 |
|           | SD                     | 0.000                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                     | 0.000             | 0.000   |
|           | N                      | 4                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                         | 5                 | 4       |
|           |                        | 4=4.000                   | 1-1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | allo                                                                                                                      | 474.000           | 4=4004  |
| 4         | Mean                   | 176.000                   | 176.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 176.000                                                                                                                   | 176.000           | 176.000 |
|           | SD                     | 0.000                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                     | 0.000             | 0.000   |
|           | N                      | 5                         | 61, 32 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                         | 5                 | 5       |
|           | % Diff (G1)            | 0                         | dillo 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                         | 0                 | (       |
| Significa | ntly different from co | ontrol group (Group 1) va | lue: $a - P \le 0.05$ b $- P \le 0.01$<br>d $- P \le 0.05$ e $- P \le 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29 - 6 h Post Dose  176.000 0.000 5  176.000 0.000 5 0 $c - P \le 0.001 \ (t\text{-test})$ $f - P \le 0.001 \ (Wilcoxon)$ |                   |         |
| Significa | ntly different from co | ontrol group (Group 1) va | 176.000 $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.000$ $0.$ | $c - P \le 0.001$ (t-test)<br>$f - P \le 0.001$ (Wilcoxon)                                                                |                   |         |

Table 10 **Summary of Cytokine Values** 

TNF- $\alpha$  (pg/mL) Females

Group 1 - Reference Item

|       |             |                         |                    | <b>.</b>                                                                         |                 |      |
|-------|-------------|-------------------------|--------------------|----------------------------------------------------------------------------------|-----------------|------|
|       | Summary     |                         |                    | Day                                                                              | - 6 h Post Dose |      |
| Group | Information | 1 - 6 h Post Dose       | 15 - 6 h Post Dose | 29 - 6 h Post Dose 43                                                            | - 6 h Post Dose | 5    |
|       |             |                         |                    | atio. Ser                                                                        |                 |      |
| 1     | Mean        | 1.470                   | 2.790              | (1.470)                                                                          | 1.470           | 3.68 |
|       | SD          | 0.000                   | 2.952              | 0,000                                                                            | 0.000           | 3.03 |
|       | N           | 4                       | 5                  | 3.996<br>3.459<br>5<br>172                                                       | 5               |      |
|       |             |                         | 20°                | atile 200                                                                        |                 |      |
| 4     | Mean        | 1.470                   | 4.792              | 3.996                                                                            | 2.544           | 1.47 |
|       | SD          | 0.000                   | 4.765              | 3.459                                                                            | 2.402           | 0.00 |
|       | N           | 5                       | Elle 37, 70        | 5                                                                                | 5               |      |
|       | % Diff (G1) | 0                       | 72                 | 172                                                                              | 73              | -6   |
|       |             |                         | No. K              |                                                                                  |                 |      |
|       |             | ,08                     | Set Cos            |                                                                                  |                 |      |
|       |             | annot be used to supply | nder Res           | 3.996 3.459 5 172  01 $c - P \le 0.001$ (t-test) 01 $f - P \le 0.001$ (Wilcoxon) |                 |      |

Table 10 **Summary of Cytokine Values** 

IP-10 (pg/mL) Females

Group 1 - Reference Item

|           | Summary               |                           |                                                                                                                            | Day                                                                 | 200                  |        |
|-----------|-----------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------|--------|
| Group     | Information           | 1 - 6 h Post Dose         | 15 - 6 h Post Dose 2                                                                                                       | 9 - 6 h Post Dose                                                   | 43 - 6 h Post Dose   | 57     |
| Gloup     | mormation             | 1 - 0 11 1 05t 12050      | 13 - 0 11 1 05t D05C 2                                                                                                     | J - O II I OSt DOSC                                                 | +3 - 0 II I OSt DOSC | 31     |
| 1         | Mean                  | 101.380                   | 78.686                                                                                                                     | 75.830                                                              | 105.752              | 52.852 |
| •         | SD                    | 45.097                    | 30 456                                                                                                                     | 30 099                                                              | 35.779               | 18.137 |
|           | N                     | 4                         | 5                                                                                                                          | 5                                                                   | 5                    | 5      |
|           |                       |                           | 1254.524 c<br>241,636                                                                                                      | 5<br>1374.798 d<br>414.653                                          |                      |        |
| 4         | Mean                  | 1484.720 d                | 1254.524 c                                                                                                                 | 1374.798 d                                                          | 947.402 d            | 47.134 |
|           | SD                    | 308.884                   | 241,636                                                                                                                    | 414.653                                                             | 333.750              | 13.418 |
|           | N                     | 5                         | 50 30 40                                                                                                                   | 5                                                                   | 5                    | 5      |
|           | % Diff (G1)           | 1365                      | 1494                                                                                                                       | 1713                                                                | 796                  | -11    |
|           |                       |                           |                                                                                                                            |                                                                     |                      |        |
| Significa | ntly different from c | ontrol group (Group 1) va | alue: $a - P \le 0.05$ b $- P \le 0.01$<br>d $- P \le 0.05$ e $- P \le 0.01$                                               | c - P $\leq$ 0.001 ( <i>t</i> -test)<br>f - P $\leq$ 0.001 (Wilcoxo | n)                   |        |
| Significa | ntly different from c | ontrol group (Group 1) va | $1254.524 \text{ c}$ $241.636$ $494$ $alue: a - P \le 0.05 \text{ b} - P \le 0.01$ $d - P \le 0.05 \text{ e} - P \le 0.01$ | $c - P \le 0.001$ ( <i>t</i> -test)<br>$f - P \le 0.001$ (Wilcoxo   | n)                   |        |

Table 10 **Summary of Cytokine Values** 

MIP-1- $\alpha$  (pg/mL) Females

Group 1 - Reference Item

|           | Summary               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Day                                                                   | Up.               |       |
|-----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|-------|
| Group     | Information           | 1 - 6 h Post Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15 - 6 h Post Dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29 - 6 h Post Dose 2                                                  | 3 - 6 h Post Dose | 57    |
|           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ijo, cek                                                              |                   |       |
| 1         | Mean                  | 5.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5.850)                                                               | 5.850             | 5.850 |
|           | SD                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                 | 0.000             | 0.000 |
|           | N                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.098<br>18.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.632<br>17.515<br>5                                                 | 5                 | 5     |
|           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31101200                                                              |                   |       |
| 4         | Mean                  | 20.474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.632                                                                | 10.984            | 5.850 |
|           | SD                    | 13.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18,462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.515                                                                | 11.480            | 0.000 |
|           | N                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18,462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                     | 5                 | 5     |
|           | % Diff (G1)           | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 321                                                                   | 88                | 0     |
| Cimicina  | .1 1'00 .0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                   |       |
| Significa | ntly different from c | ontrol group (Group 1) va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alue: $a - P \le 0.05$ b $- P \le 0.01$<br>d $- P \le 0.05$ e $- P \le 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c - P $\leq$ 0.001 ( <i>t</i> -test)<br>f - P $\leq$ 0.001 (Wilcoxon) |                   |       |
| Significa | ntly different from c | control group (Group 1) value of the state o | $ \begin{array}{c} 25.098 \\ 18.462 \\ 329 \end{array} $ Talue: $a - P \le 0.05, b - P \le 0.01, b $ | $c - P \le 0.001  (t\text{-test})$ $f - P \le 0.001  (Wilcoxon)$      |                   |       |

Table 10 **Summary of Cytokine Values** 

MCP-1 (pg/mL) Females

Group 1 - Reference Item

|       |             |                    |                                |                                                                         | VO                |        |
|-------|-------------|--------------------|--------------------------------|-------------------------------------------------------------------------|-------------------|--------|
|       | Summary     |                    |                                | Day                                                                     | Up                |        |
| Group | Information | 1 - 6 h Post Dose  | 15 - 6 h Post Dose             | 29 - 6 h Post Dose 4                                                    | 3 - 6 h Post Dose | 5′     |
|       |             |                    |                                | tio ser                                                                 |                   |        |
| 1     | Mean        | 128.680            | 158.156                        | 174.606                                                                 | 169.772           | 113.61 |
|       | SD          | 116.360            | 120.028                        | 143,082                                                                 | 136.358           | 96.40  |
|       | N           | 4                  | 5                              | 3 (1 )                                                                  | 5                 | :      |
|       |             |                    | 26g.                           | 1032.040 b<br>408.110<br>5                                              |                   |        |
| 4     | Mean        | 525.168 a          | 1032.490 a                     | 1032.040 Ъ                                                              | 397.324           | 132.25 |
|       | SD          | 272.356            | 668.447                        | 408.110                                                                 | 461.595           | 138.09 |
|       | N           | 5                  | ELL 31 40                      | 5                                                                       | 5                 | ;      |
|       | % Diff (G1) | 308                | 553                            | 491                                                                     | 134               | 1      |
|       |             |                    | $d - P \le 0.05 e - P \le 0.0$ | $01 \text{ f} - P \le 0.001 \text{ (Wilcoxon)}$                         |                   |        |
|       |             | SUPP               | d-P≤0.05 e-P≤0.0               | 01 f-P≤0.001 (Wilcoxon)                                                 |                   |        |
|       |             | the leed to supply | d-P≤0.05 e-P≤0.0               | 1032.040 b 408.110 5 491  01 c-P≤0.001 (t-test) 01 f-P≤0.001 (Wilcoxon) |                   |        |